nostril

A C cli tool for creating nostr events
git clone git://jb55.com/nostril
Log | Files | Refs | README

commit 6719988d8d81711ecf39ce637db0815cd6c6f5e3
parent 435380f327499a97078ab9eda9340fd02432e696
Author: William Casarin <jb55@jb55.com>
Date:   Thu, 14 Apr 2022 12:35:26 -0700

encrypted dms

Signed-off-by: William Casarin <jb55@jb55.com>

Diffstat:
MMakefile | 4++--
Aaes.c | 572+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aaes.h | 91+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Abase64.c | 254+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Abase64.h | 241+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Mnostril.c | 188+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++--------
Mrandom.h | 5++---
Mshell.nix | 2+-
8 files changed, 1333 insertions(+), 24 deletions(-)

diff --git a/Makefile b/Makefile @@ -1,6 +1,6 @@ -CFLAGS = -Wall -O2 -OBJS = sha256.o nostril.o +CFLAGS = -Wall -Og +OBJS = sha256.o nostril.o aes.o base64.o HEADERS = hex.h random.h config.h sha256.h all: nostril diff --git a/aes.c b/aes.c @@ -0,0 +1,572 @@ +/* + +This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode. +Block size can be chosen in aes.h - available choices are AES128, AES192, AES256. + +The implementation is verified against the test vectors in: + National Institute of Standards and Technology Special Publication 800-38A 2001 ED + +ECB-AES128 +---------- + + plain-text: + 6bc1bee22e409f96e93d7e117393172a + ae2d8a571e03ac9c9eb76fac45af8e51 + 30c81c46a35ce411e5fbc1191a0a52ef + f69f2445df4f9b17ad2b417be66c3710 + + key: + 2b7e151628aed2a6abf7158809cf4f3c + + resulting cipher + 3ad77bb40d7a3660a89ecaf32466ef97 + f5d3d58503b9699de785895a96fdbaaf + 43b1cd7f598ece23881b00e3ed030688 + 7b0c785e27e8ad3f8223207104725dd4 + + +NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0) + You should pad the end of the string with zeros if this is not the case. + For AES192/256 the key size is proportionally larger. + +*/ + + +/*****************************************************************************/ +/* Includes: */ +/*****************************************************************************/ +#include <string.h> // CBC mode, for memset +#include "aes.h" + +/*****************************************************************************/ +/* Defines: */ +/*****************************************************************************/ +// The number of columns comprising a state in AES. This is a constant in AES. Value=4 +#define Nb 4 + +#if defined(AES256) && (AES256 == 1) + #define Nk 8 + #define Nr 14 +#elif defined(AES192) && (AES192 == 1) + #define Nk 6 + #define Nr 12 +#else + #define Nk 4 // The number of 32 bit words in a key. + #define Nr 10 // The number of rounds in AES Cipher. +#endif + +// jcallan@github points out that declaring Multiply as a function +// reduces code size considerably with the Keil ARM compiler. +// See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3 +#ifndef MULTIPLY_AS_A_FUNCTION + #define MULTIPLY_AS_A_FUNCTION 0 +#endif + + + + +/*****************************************************************************/ +/* Private variables: */ +/*****************************************************************************/ +// state - array holding the intermediate results during decryption. +typedef uint8_t state_t[4][4]; + + + +// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM +// The numbers below can be computed dynamically trading ROM for RAM - +// This can be useful in (embedded) bootloader applications, where ROM is often limited. +static const uint8_t sbox[256] = { + //0 1 2 3 4 5 6 7 8 9 A B C D E F + 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, + 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, + 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, + 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, + 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, + 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, + 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, + 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, + 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, + 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, + 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, + 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, + 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, + 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, + 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, + 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; + +#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) +static const uint8_t rsbox[256] = { + 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, + 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, + 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, + 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, + 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, + 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, + 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, + 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, + 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, + 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, + 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, + 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, + 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, + 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, + 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, + 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; +#endif + +// The round constant word array, Rcon[i], contains the values given by +// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8) +static const uint8_t Rcon[11] = { + 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 }; + +/* + * Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12), + * that you can remove most of the elements in the Rcon array, because they are unused. + * + * From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon + * + * "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed), + * up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm." + */ + + +/*****************************************************************************/ +/* Private functions: */ +/*****************************************************************************/ +/* +static uint8_t getSBoxValue(uint8_t num) +{ + return sbox[num]; +} +*/ +#define getSBoxValue(num) (sbox[(num)]) + +// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. +static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key) +{ + unsigned i, j, k; + uint8_t tempa[4]; // Used for the column/row operations + + // The first round key is the key itself. + for (i = 0; i < Nk; ++i) + { + RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; + RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; + RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; + RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; + } + + // All other round keys are found from the previous round keys. + for (i = Nk; i < Nb * (Nr + 1); ++i) + { + { + k = (i - 1) * 4; + tempa[0]=RoundKey[k + 0]; + tempa[1]=RoundKey[k + 1]; + tempa[2]=RoundKey[k + 2]; + tempa[3]=RoundKey[k + 3]; + + } + + if (i % Nk == 0) + { + // This function shifts the 4 bytes in a word to the left once. + // [a0,a1,a2,a3] becomes [a1,a2,a3,a0] + + // Function RotWord() + { + const uint8_t u8tmp = tempa[0]; + tempa[0] = tempa[1]; + tempa[1] = tempa[2]; + tempa[2] = tempa[3]; + tempa[3] = u8tmp; + } + + // SubWord() is a function that takes a four-byte input word and + // applies the S-box to each of the four bytes to produce an output word. + + // Function Subword() + { + tempa[0] = getSBoxValue(tempa[0]); + tempa[1] = getSBoxValue(tempa[1]); + tempa[2] = getSBoxValue(tempa[2]); + tempa[3] = getSBoxValue(tempa[3]); + } + + tempa[0] = tempa[0] ^ Rcon[i/Nk]; + } +#if defined(AES256) && (AES256 == 1) + if (i % Nk == 4) + { + // Function Subword() + { + tempa[0] = getSBoxValue(tempa[0]); + tempa[1] = getSBoxValue(tempa[1]); + tempa[2] = getSBoxValue(tempa[2]); + tempa[3] = getSBoxValue(tempa[3]); + } + } +#endif + j = i * 4; k=(i - Nk) * 4; + RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0]; + RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1]; + RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2]; + RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3]; + } +} + +void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key) +{ + KeyExpansion(ctx->RoundKey, key); +} +#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1)) +void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv) +{ + KeyExpansion(ctx->RoundKey, key); + memcpy (ctx->Iv, iv, AES_BLOCKLEN); +} +void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv) +{ + memcpy (ctx->Iv, iv, AES_BLOCKLEN); +} +#endif + +// This function adds the round key to state. +// The round key is added to the state by an XOR function. +static void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey) +{ + uint8_t i,j; + for (i = 0; i < 4; ++i) + { + for (j = 0; j < 4; ++j) + { + (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j]; + } + } +} + +// The SubBytes Function Substitutes the values in the +// state matrix with values in an S-box. +static void SubBytes(state_t* state) +{ + uint8_t i, j; + for (i = 0; i < 4; ++i) + { + for (j = 0; j < 4; ++j) + { + (*state)[j][i] = getSBoxValue((*state)[j][i]); + } + } +} + +// The ShiftRows() function shifts the rows in the state to the left. +// Each row is shifted with different offset. +// Offset = Row number. So the first row is not shifted. +static void ShiftRows(state_t* state) +{ + uint8_t temp; + + // Rotate first row 1 columns to left + temp = (*state)[0][1]; + (*state)[0][1] = (*state)[1][1]; + (*state)[1][1] = (*state)[2][1]; + (*state)[2][1] = (*state)[3][1]; + (*state)[3][1] = temp; + + // Rotate second row 2 columns to left + temp = (*state)[0][2]; + (*state)[0][2] = (*state)[2][2]; + (*state)[2][2] = temp; + + temp = (*state)[1][2]; + (*state)[1][2] = (*state)[3][2]; + (*state)[3][2] = temp; + + // Rotate third row 3 columns to left + temp = (*state)[0][3]; + (*state)[0][3] = (*state)[3][3]; + (*state)[3][3] = (*state)[2][3]; + (*state)[2][3] = (*state)[1][3]; + (*state)[1][3] = temp; +} + +static uint8_t xtime(uint8_t x) +{ + return ((x<<1) ^ (((x>>7) & 1) * 0x1b)); +} + +// MixColumns function mixes the columns of the state matrix +static void MixColumns(state_t* state) +{ + uint8_t i; + uint8_t Tmp, Tm, t; + for (i = 0; i < 4; ++i) + { + t = (*state)[i][0]; + Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ; + Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ; + Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ; + Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ; + Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ; + } +} + +// Multiply is used to multiply numbers in the field GF(2^8) +// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary +// The compiler seems to be able to vectorize the operation better this way. +// See https://github.com/kokke/tiny-AES-c/pull/34 +#if MULTIPLY_AS_A_FUNCTION +static uint8_t Multiply(uint8_t x, uint8_t y) +{ + return (((y & 1) * x) ^ + ((y>>1 & 1) * xtime(x)) ^ + ((y>>2 & 1) * xtime(xtime(x))) ^ + ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ + ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */ + } +#else +#define Multiply(x, y) \ + ( ((y & 1) * x) ^ \ + ((y>>1 & 1) * xtime(x)) ^ \ + ((y>>2 & 1) * xtime(xtime(x))) ^ \ + ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \ + ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \ + +#endif + +#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) +/* +static uint8_t getSBoxInvert(uint8_t num) +{ + return rsbox[num]; +} +*/ +#define getSBoxInvert(num) (rsbox[(num)]) + +// MixColumns function mixes the columns of the state matrix. +// The method used to multiply may be difficult to understand for the inexperienced. +// Please use the references to gain more information. +static void InvMixColumns(state_t* state) +{ + int i; + uint8_t a, b, c, d; + for (i = 0; i < 4; ++i) + { + a = (*state)[i][0]; + b = (*state)[i][1]; + c = (*state)[i][2]; + d = (*state)[i][3]; + + (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09); + (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d); + (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b); + (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e); + } +} + + +// The SubBytes Function Substitutes the values in the +// state matrix with values in an S-box. +static void InvSubBytes(state_t* state) +{ + uint8_t i, j; + for (i = 0; i < 4; ++i) + { + for (j = 0; j < 4; ++j) + { + (*state)[j][i] = getSBoxInvert((*state)[j][i]); + } + } +} + +static void InvShiftRows(state_t* state) +{ + uint8_t temp; + + // Rotate first row 1 columns to right + temp = (*state)[3][1]; + (*state)[3][1] = (*state)[2][1]; + (*state)[2][1] = (*state)[1][1]; + (*state)[1][1] = (*state)[0][1]; + (*state)[0][1] = temp; + + // Rotate second row 2 columns to right + temp = (*state)[0][2]; + (*state)[0][2] = (*state)[2][2]; + (*state)[2][2] = temp; + + temp = (*state)[1][2]; + (*state)[1][2] = (*state)[3][2]; + (*state)[3][2] = temp; + + // Rotate third row 3 columns to right + temp = (*state)[0][3]; + (*state)[0][3] = (*state)[1][3]; + (*state)[1][3] = (*state)[2][3]; + (*state)[2][3] = (*state)[3][3]; + (*state)[3][3] = temp; +} +#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) + +// Cipher is the main function that encrypts the PlainText. +static void Cipher(state_t* state, const uint8_t* RoundKey) +{ + uint8_t round = 0; + + // Add the First round key to the state before starting the rounds. + AddRoundKey(0, state, RoundKey); + + // There will be Nr rounds. + // The first Nr-1 rounds are identical. + // These Nr rounds are executed in the loop below. + // Last one without MixColumns() + for (round = 1; ; ++round) + { + SubBytes(state); + ShiftRows(state); + if (round == Nr) { + break; + } + MixColumns(state); + AddRoundKey(round, state, RoundKey); + } + // Add round key to last round + AddRoundKey(Nr, state, RoundKey); +} + +#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) +static void InvCipher(state_t* state, const uint8_t* RoundKey) +{ + uint8_t round = 0; + + // Add the First round key to the state before starting the rounds. + AddRoundKey(Nr, state, RoundKey); + + // There will be Nr rounds. + // The first Nr-1 rounds are identical. + // These Nr rounds are executed in the loop below. + // Last one without InvMixColumn() + for (round = (Nr - 1); ; --round) + { + InvShiftRows(state); + InvSubBytes(state); + AddRoundKey(round, state, RoundKey); + if (round == 0) { + break; + } + InvMixColumns(state); + } + +} +#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) + +/*****************************************************************************/ +/* Public functions: */ +/*****************************************************************************/ +#if defined(ECB) && (ECB == 1) + + +void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf) +{ + // The next function call encrypts the PlainText with the Key using AES algorithm. + Cipher((state_t*)buf, ctx->RoundKey); +} + +void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf) +{ + // The next function call decrypts the PlainText with the Key using AES algorithm. + InvCipher((state_t*)buf, ctx->RoundKey); +} + + +#endif // #if defined(ECB) && (ECB == 1) + + + + + +#if defined(CBC) && (CBC == 1) + + +static void XorWithIv(uint8_t* buf, const uint8_t* Iv) +{ + uint8_t i; + for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size + { + buf[i] ^= Iv[i]; + } +} + +void AES_CBC_encrypt_buffer(struct AES_ctx *ctx, uint8_t* buf, size_t length) +{ + size_t i; + uint8_t *Iv = ctx->Iv; + for (i = 0; i < length; i += AES_BLOCKLEN) + { + XorWithIv(buf, Iv); + Cipher((state_t*)buf, ctx->RoundKey); + Iv = buf; + buf += AES_BLOCKLEN; + } + /* store Iv in ctx for next call */ + memcpy(ctx->Iv, Iv, AES_BLOCKLEN); +} + +void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length) +{ + size_t i; + uint8_t storeNextIv[AES_BLOCKLEN]; + for (i = 0; i < length; i += AES_BLOCKLEN) + { + memcpy(storeNextIv, buf, AES_BLOCKLEN); + InvCipher((state_t*)buf, ctx->RoundKey); + XorWithIv(buf, ctx->Iv); + memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN); + buf += AES_BLOCKLEN; + } + +} + +#endif // #if defined(CBC) && (CBC == 1) + + + +#if defined(CTR) && (CTR == 1) + +/* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */ +void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length) +{ + uint8_t buffer[AES_BLOCKLEN]; + + size_t i; + int bi; + for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi) + { + if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */ + { + + memcpy(buffer, ctx->Iv, AES_BLOCKLEN); + Cipher((state_t*)buffer,ctx->RoundKey); + + /* Increment Iv and handle overflow */ + for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi) + { + /* inc will overflow */ + if (ctx->Iv[bi] == 255) + { + ctx->Iv[bi] = 0; + continue; + } + ctx->Iv[bi] += 1; + break; + } + bi = 0; + } + + buf[i] = (buf[i] ^ buffer[bi]); + } +} + +#endif // #if defined(CTR) && (CTR == 1) + diff --git a/aes.h b/aes.h @@ -0,0 +1,91 @@ +#ifndef _AES_H_ +#define _AES_H_ + +#include <stdint.h> +#include <stddef.h> + +// #define the macros below to 1/0 to enable/disable the mode of operation. +// +// CBC enables AES encryption in CBC-mode of operation. +// CTR enables encryption in counter-mode. +// ECB enables the basic ECB 16-byte block algorithm. All can be enabled simultaneously. + +// The #ifndef-guard allows it to be configured before #include'ing or at compile time. +#ifndef CBC + #define CBC 1 +#endif + +#ifndef ECB + #define ECB 0 +#endif + +#ifndef CTR + #define CTR 0 +#endif + + +//#define AES128 1 +//#define AES192 1 +#define AES256 1 + +#define AES_BLOCKLEN 16 // Block length in bytes - AES is 128b block only + +#if defined(AES256) && (AES256 == 1) + #define AES_KEYLEN 32 + #define AES_keyExpSize 240 +#elif defined(AES192) && (AES192 == 1) + #define AES_KEYLEN 24 + #define AES_keyExpSize 208 +#else + #define AES_KEYLEN 16 // Key length in bytes + #define AES_keyExpSize 176 +#endif + +struct AES_ctx +{ + uint8_t RoundKey[AES_keyExpSize]; +#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1)) + uint8_t Iv[AES_BLOCKLEN]; +#endif +}; + +void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key); +#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1)) +void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv); +void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv); +#endif + +#if defined(ECB) && (ECB == 1) +// buffer size is exactly AES_BLOCKLEN bytes; +// you need only AES_init_ctx as IV is not used in ECB +// NB: ECB is considered insecure for most uses +void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf); +void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf); + +#endif // #if defined(ECB) && (ECB == !) + + +#if defined(CBC) && (CBC == 1) +// buffer size MUST be mutile of AES_BLOCKLEN; +// Suggest https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme +// NOTES: you need to set IV in ctx via AES_init_ctx_iv() or AES_ctx_set_iv() +// no IV should ever be reused with the same key +void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length); +void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length); + +#endif // #if defined(CBC) && (CBC == 1) + + +#if defined(CTR) && (CTR == 1) + +// Same function for encrypting as for decrypting. +// IV is incremented for every block, and used after encryption as XOR-compliment for output +// Suggesting https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme +// NOTES: you need to set IV in ctx with AES_init_ctx_iv() or AES_ctx_set_iv() +// no IV should ever be reused with the same key +void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length); + +#endif // #if defined(CTR) && (CTR == 1) + + +#endif // _AES_H_ diff --git a/base64.c b/base64.c @@ -0,0 +1,254 @@ +/* Licensed under BSD-MIT - see LICENSE file for details */ +#include "base64.h" + +#include <errno.h> +#include <string.h> +#include <assert.h> +#include <stdint.h> + +/** + * sixbit_to_b64 - maps a 6-bit value to the base64 alphabet + * @param map A base 64 map (see base64_init_map) + * @param sixbit Six-bit value to map + * @return a base 64 character + */ +static char sixbit_to_b64(const base64_maps_t *maps, const uint8_t sixbit) +{ + assert(sixbit <= 63); + + return maps->encode_map[(unsigned char)sixbit]; +} + +/** + * sixbit_from_b64 - maps a base64-alphabet character to its 6-bit value + * @param maps A base 64 maps structure (see base64_init_maps) + * @param sixbit Six-bit value to map + * @return a six-bit value + */ +static int8_t sixbit_from_b64(const base64_maps_t *maps, + const unsigned char b64letter) +{ + int8_t ret; + + ret = maps->decode_map[(unsigned char)b64letter]; + if (ret == (char)0xff) { + errno = EDOM; + return -1; + } + + return ret; +} + +bool base64_char_in_alphabet(const base64_maps_t *maps, const char b64char) +{ + return (maps->decode_map[(const unsigned char)b64char] != (char)0xff); +} + +void base64_init_maps(base64_maps_t *dest, const char src[64]) +{ + unsigned char i; + + memcpy(dest->encode_map,src,64); + memset(dest->decode_map,0xff,256); + for (i=0; i<64; i++) { + dest->decode_map[(unsigned char)src[i]] = i; + } +} + +size_t base64_encoded_length(size_t srclen) +{ + return ((srclen + 2) / 3) * 4; +} + +void base64_encode_triplet_using_maps(const base64_maps_t *maps, + char dest[4], const char src[3]) +{ + char a = src[0]; + char b = src[1]; + char c = src[2]; + + dest[0] = sixbit_to_b64(maps, (a & 0xfc) >> 2); + dest[1] = sixbit_to_b64(maps, ((a & 0x3) << 4) | ((b & 0xf0) >> 4)); + dest[2] = sixbit_to_b64(maps, ((c & 0xc0) >> 6) | ((b & 0xf) << 2)); + dest[3] = sixbit_to_b64(maps, c & 0x3f); +} + +void base64_encode_tail_using_maps(const base64_maps_t *maps, char dest[4], + const char *src, const size_t srclen) +{ + char longsrc[3] = { 0 }; + + assert(srclen <= 3); + + memcpy(longsrc, src, srclen); + base64_encode_triplet_using_maps(maps, dest, longsrc); + memset(dest+1+srclen, '=', 3-srclen); +} + +ssize_t base64_encode_using_maps(const base64_maps_t *maps, + char *dest, const size_t destlen, + const char *src, const size_t srclen) +{ + size_t src_offset = 0; + size_t dest_offset = 0; + + if (destlen < base64_encoded_length(srclen)) { + errno = EOVERFLOW; + return -1; + } + + while (srclen - src_offset >= 3) { + base64_encode_triplet_using_maps(maps, &dest[dest_offset], &src[src_offset]); + src_offset += 3; + dest_offset += 4; + } + + if (src_offset < srclen) { + base64_encode_tail_using_maps(maps, &dest[dest_offset], &src[src_offset], srclen-src_offset); + dest_offset += 4; + } + + memset(&dest[dest_offset], '\0', destlen-dest_offset); + + return dest_offset; +} + +size_t base64_decoded_length(size_t srclen) +{ + return ((srclen+3)/4*3); +} + +ssize_t base64_decode_quartet_using_maps(const base64_maps_t *maps, char dest[3], + const char src[4]) +{ + signed char a; + signed char b; + signed char c; + signed char d; + + a = sixbit_from_b64(maps, src[0]); + b = sixbit_from_b64(maps, src[1]); + c = sixbit_from_b64(maps, src[2]); + d = sixbit_from_b64(maps, src[3]); + + if ((a == -1) || (b == -1) || (c == -1) || (d == -1)) { + return -1; + } + + dest[0] = (a << 2) | (b >> 4); + dest[1] = ((b & 0xf) << 4) | (c >> 2); + dest[2] = ((c & 0x3) << 6) | d; + + return 0; +} + + +ssize_t base64_decode_tail_using_maps(const base64_maps_t *maps, char dest[3], + const char * src, const size_t srclen) +{ + char longsrc[4]; + int quartet_result; + size_t insize = srclen; + + while (insize != 0 && + src[insize-1] == '=') { /* throw away padding symbols */ + insize--; + } + if (insize == 0) { + return 0; + } + if (insize == 1) { + /* the input is malformed.... */ + errno = EINVAL; + return -1; + } + memcpy(longsrc, src, insize); + memset(longsrc+insize, 'A', 4-insize); + quartet_result = base64_decode_quartet_using_maps(maps, dest, longsrc); + if (quartet_result == -1) { + return -1; + } + + return insize - 1; +} + +ssize_t base64_decode_using_maps(const base64_maps_t *maps, + char *dest, const size_t destlen, + const char *src, const size_t srclen) +{ + ssize_t dest_offset = 0; + ssize_t i; + ssize_t more; + + if (destlen < base64_decoded_length(srclen)) { + errno = EOVERFLOW; + return -1; + } + + for(i=0; srclen - i > 4; i+=4) { + if (base64_decode_quartet_using_maps(maps, &dest[dest_offset], &src[i]) == -1) { + return -1; + } + dest_offset += 3; + } + + more = base64_decode_tail_using_maps(maps, &dest[dest_offset], &src[i], srclen - i); + if (more == -1) { + return -1; + } + dest_offset += more; + + memset(&dest[dest_offset], '\0', destlen-dest_offset); + + return dest_offset; +} + + + + +/** + * base64_maps_rfc4648 - pregenerated maps struct for rfc4648 + */ +const base64_maps_t base64_maps_rfc4648 = { + "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/", + + "\xff\xff\xff\xff\xff" /* 0 */ \ + "\xff\xff\xff\xff\xff" /* 5 */ \ + "\xff\xff\xff\xff\xff" /* 10 */ \ + "\xff\xff\xff\xff\xff" /* 15 */ \ + "\xff\xff\xff\xff\xff" /* 20 */ \ + "\xff\xff\xff\xff\xff" /* 25 */ \ + "\xff\xff\xff\xff\xff" /* 30 */ \ + "\xff\xff\xff\xff\xff" /* 35 */ \ + "\xff\xff\xff\x3e\xff" /* 40 */ \ + "\xff\xff\x3f\x34\x35" /* 45 */ \ + "\x36\x37\x38\x39\x3a" /* 50 */ \ + "\x3b\x3c\x3d\xff\xff" /* 55 */ \ + "\xff\xff\xff\xff\xff" /* 60 */ \ + "\x00\x01\x02\x03\x04" /* 65 A */ \ + "\x05\x06\x07\x08\x09" /* 70 */ \ + "\x0a\x0b\x0c\x0d\x0e" /* 75 */ \ + "\x0f\x10\x11\x12\x13" /* 80 */ \ + "\x14\x15\x16\x17\x18" /* 85 */ \ + "\x19\xff\xff\xff\xff" /* 90 */ \ + "\xff\xff\x1a\x1b\x1c" /* 95 */ \ + "\x1d\x1e\x1f\x20\x21" /* 100 */ \ + "\x22\x23\x24\x25\x26" /* 105 */ \ + "\x27\x28\x29\x2a\x2b" /* 110 */ \ + "\x2c\x2d\x2e\x2f\x30" /* 115 */ \ + "\x31\x32\x33\xff\xff" /* 120 */ \ + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" /* 125 */ \ + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" \ + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" \ + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" /* 155 */ \ + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" \ + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" \ + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" /* 185 */ \ + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" \ + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" \ + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" /* 215 */ \ + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" \ + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" \ + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" /* 245 */ +}; + diff --git a/base64.h b/base64.h @@ -0,0 +1,241 @@ +/* Licensed under BSD-MIT - see LICENSE file for details */ +#ifndef CCAN_BASE64_H +#define CCAN_BASE64_H + +#include <stddef.h> +#include <stdbool.h> +#include <sys/types.h> + +/** + * base64_maps_t - structure to hold maps for encode/decode + */ +typedef struct { + char encode_map[64]; + signed char decode_map[256]; +} base64_maps_t; + +/** + * base64_encoded_length - Calculate encode buffer length + * @param srclen the size of the data to be encoded + * @note add 1 to this to get null-termination + * @return Buffer length required for encode + */ +size_t base64_encoded_length(size_t srclen); + +/** + * base64_decoded_length - Calculate decode buffer length + * @param srclen Length of the data to be decoded + * @note This does not return the size of the decoded data! see base64_decode + * @return Minimum buffer length for safe decode + */ +size_t base64_decoded_length(size_t srclen); + +/** + * base64_init_maps - populate a base64_maps_t based on a supplied alphabet + * @param dest A base64 maps object + * @param src Alphabet to populate the maps from (e.g. base64_alphabet_rfc4648) + */ +void base64_init_maps(base64_maps_t *dest, const char src[64]); + + +/** + * base64_encode_triplet_using_maps - encode 3 bytes into base64 using a specific alphabet + * @param maps Maps to use for encoding (see base64_init_maps) + * @param dest Buffer containing 3 bytes + * @param src Buffer containing 4 characters + */ +void base64_encode_triplet_using_maps(const base64_maps_t *maps, + char dest[4], const char src[3]); + +/** + * base64_encode_tail_using_maps - encode the final bytes of a source using a specific alphabet + * @param maps Maps to use for encoding (see base64_init_maps) + * @param dest Buffer containing 4 bytes + * @param src Buffer containing srclen bytes + * @param srclen Number of bytes (<= 3) to encode in src + */ +void base64_encode_tail_using_maps(const base64_maps_t *maps, char dest[4], + const char *src, size_t srclen); + +/** + * base64_encode_using_maps - encode a buffer into base64 using a specific alphabet + * @param maps Maps to use for encoding (see base64_init_maps) + * @param dest Buffer to encode into + * @param destlen Length of dest + * @param src Buffer to encode + * @param srclen Length of the data to encode + * @return Number of encoded bytes set in dest. -1 on error (and errno set) + * @note dest will be nul-padded to destlen (past any required padding) + * @note sets errno = EOVERFLOW if destlen is too small + */ +ssize_t base64_encode_using_maps(const base64_maps_t *maps, + char *dest, size_t destlen, + const char *src, size_t srclen); + +/* + * base64_char_in_alphabet - returns true if character can be part of an encoded string + * @param maps A base64 maps object (see base64_init_maps) + * @param b64char Character to check + */ +bool base64_char_in_alphabet(const base64_maps_t *maps, char b64char); + +/** + * base64_decode_using_maps - decode a base64-encoded string using a specific alphabet + * @param maps A base64 maps object (see base64_init_maps) + * @param dest Buffer to decode into + * @param destlen length of dest + * @param src the buffer to decode + * @param srclen the length of the data to decode + * @return Number of decoded bytes set in dest. -1 on error (and errno set) + * @note dest will be nul-padded to destlen + * @note sets errno = EOVERFLOW if destlen is too small + * @note sets errno = EDOM if src contains invalid characters + */ +ssize_t base64_decode_using_maps(const base64_maps_t *maps, + char *dest, size_t destlen, + const char *src, size_t srclen); + +/** + * base64_decode_quartet_using_maps - decode 4 bytes from base64 using a specific alphabet + * @param maps A base64 maps object (see base64_init_maps) + * @param dest Buffer containing 3 bytes + * @param src Buffer containing 4 bytes + * @return Number of decoded bytes set in dest. -1 on error (and errno set) + * @note sets errno = EDOM if src contains invalid characters + */ +ssize_t base64_decode_quartet_using_maps(const base64_maps_t *maps, + char dest[3], const char src[4]); + +/** + * base64_decode_tail_using_maps - decode the final bytes of a base64 string using a specific alphabet + * @param maps A base64 maps object (see base64_init_maps) + * @param dest Buffer containing 3 bytes + * @param src Buffer containing 4 bytes - padded with '=' as required + * @param srclen Number of bytes to decode in src + * @return Number of decoded bytes set in dest. -1 on error (and errno set) + * @note sets errno = EDOM if src contains invalid characters + * @note sets errno = EINVAL if src is an invalid base64 tail + */ +ssize_t base64_decode_tail_using_maps(const base64_maps_t *maps, char *dest, + const char *src, size_t srclen); + + +/* the rfc4648 functions: */ + +extern const base64_maps_t base64_maps_rfc4648; + +/** + * base64_encode - Encode a buffer into base64 according to rfc4648 + * @param dest Buffer to encode into + * @param destlen Length of the destination buffer + * @param src Buffer to encode + * @param srclen Length of the data to encode + * @return Number of encoded bytes set in dest. -1 on error (and errno set) + * @note dest will be nul-padded to destlen (past any required padding) + * @note sets errno = EOVERFLOW if destlen is too small + * + * This function encodes src according to http://tools.ietf.org/html/rfc4648 + * + * Example: + * size_t encoded_length; + * char dest[100]; + * const char *src = "This string gets encoded"; + * encoded_length = base64_encode(dest, sizeof(dest), src, strlen(src)); + * printf("Returned data of length %zd @%p\n", encoded_length, &dest); + */ +static inline +ssize_t base64_encode(char *dest, size_t destlen, + const char *src, size_t srclen) +{ + return base64_encode_using_maps(&base64_maps_rfc4648, + dest, destlen, src, srclen); +} + +/** + * base64_encode_triplet - encode 3 bytes into base64 according to rfc4648 + * @param dest Buffer containing 4 bytes + * @param src Buffer containing 3 bytes + */ +static inline +void base64_encode_triplet(char dest[4], const char src[3]) +{ + base64_encode_triplet_using_maps(&base64_maps_rfc4648, dest, src); +} + +/** + * base64_encode_tail - encode the final bytes of a source according to rfc4648 + * @param dest Buffer containing 4 bytes + * @param src Buffer containing srclen bytes + * @param srclen Number of bytes (<= 3) to encode in src + */ +static inline +void base64_encode_tail(char dest[4], const char *src, size_t srclen) +{ + base64_encode_tail_using_maps(&base64_maps_rfc4648, dest, src, srclen); +} + + +/** + * base64_decode - decode An rfc4648 base64-encoded string + * @param dest Buffer to decode into + * @param destlen Length of the destination buffer + * @param src Buffer to decode + * @param srclen Length of the data to decode + * @return Number of decoded bytes set in dest. -1 on error (and errno set) + * @note dest will be nul-padded to destlen + * @note sets errno = EOVERFLOW if destlen is too small + * @note sets errno = EDOM if src contains invalid characters + * + * This function decodes the buffer according to + * http://tools.ietf.org/html/rfc4648 + * + * Example: + * size_t decoded_length; + * char ret[100]; + * const char *src = "Zm9vYmFyYmF6"; + * decoded_length = base64_decode(ret, sizeof(ret), src, strlen(src)); + * printf("Returned data of length %zd @%p\n", decoded_length, &ret); + */ +static inline +ssize_t base64_decode(char *dest, size_t destlen, + const char *src, size_t srclen) +{ + return base64_decode_using_maps(&base64_maps_rfc4648, + dest, destlen, src, srclen); +} + +/** + * base64_decode_quartet - decode the first 4 characters in src into dest + * @param dest Buffer containing 3 bytes + * @param src Buffer containing 4 characters + * @return Number of decoded bytes set in dest. -1 on error (and errno set) + * @note sets errno = EDOM if src contains invalid characters + */ +static inline +ssize_t base64_decode_quartet(char dest[3], const char src[4]) +{ + return base64_decode_quartet_using_maps(&base64_maps_rfc4648, + dest, src); +} + +/** + * @brief decode the final bytes of a base64 string from src into dest + * @param dest Buffer containing 3 bytes + * @param src Buffer containing 4 bytes - padded with '=' as required + * @param srclen Number of bytes to decode in src + * @return Number of decoded bytes set in dest. -1 on error (and errno set) + * @note sets errno = EDOM if src contains invalid characters + * @note sets errno = EINVAL if src is an invalid base64 tail + */ +static inline +ssize_t base64_decode_tail(char dest[3], const char *src, size_t srclen) +{ + return base64_decode_tail_using_maps(&base64_maps_rfc4648, + dest, src, srclen); +} + +/* end rfc4648 functions */ + + + +#endif /* CCAN_BASE64_H */ diff --git a/nostril.c b/nostril.c @@ -7,10 +7,13 @@ #include <inttypes.h> #include <secp256k1.h> +#include <secp256k1_ecdh.h> #include <secp256k1_schnorrsig.h> #include "cursor.h" #include "hex.h" +#include "base64.h" +#include "aes.h" #include "sha256.h" #include "random.h" @@ -20,9 +23,11 @@ #define HAS_CREATED_AT (1<<1) #define HAS_KIND (1<<2) #define HAS_ENVELOPE (1<<3) +#define HAS_ENCRYPT (1<<4) struct key { secp256k1_keypair pair; + unsigned char secret[32]; unsigned char pubkey[32]; }; @@ -30,9 +35,10 @@ struct args { unsigned int flags; int kind; + unsigned char encrypt_to[32]; const char *sec; const char *content; - + uint64_t created_at; }; @@ -184,13 +190,13 @@ static int make_sig(secp256k1_context *ctx, struct key *key, return secp256k1_schnorrsig_sign(ctx, sig, id, &key->pair, aux); } -static int create_key(secp256k1_context *ctx, struct key *key, unsigned char seckey[32]) +static int create_key(secp256k1_context *ctx, struct key *key) { secp256k1_xonly_pubkey pubkey; /* Try to create a keypair with a valid context, it should only * fail if the secret key is zero or out of range. */ - if (!secp256k1_keypair_create(ctx, &key->pair, seckey)) + if (!secp256k1_keypair_create(ctx, &key->pair, key->secret)) return 0; if (!secp256k1_keypair_xonly_pub(ctx, &pubkey, NULL, &key->pair)) @@ -202,28 +208,24 @@ static int create_key(secp256k1_context *ctx, struct key *key, unsigned char sec static int decode_key(secp256k1_context *ctx, const char *secstr, struct key *key) { - unsigned char seckey[32]; - - if (!hex_decode(secstr, strlen(secstr), seckey, 32)) { + if (!hex_decode(secstr, strlen(secstr), key->secret, 32)) { fprintf(stderr, "could not hex decode secret key\n"); return 0; } - return create_key(ctx, key, seckey); + return create_key(ctx, key); } static int generate_key(secp256k1_context *ctx, struct key *key) { - unsigned char seckey[32]; - /* If the secret key is zero or out of range (bigger than secp256k1's * order), we try to sample a new key. Note that the probability of this * happening is negligible. */ - if (!fill_random(seckey, sizeof(seckey))) { + if (!fill_random(key->secret, sizeof(key->secret))) { return 0; } - return create_key(ctx, key, seckey); + return create_key(ctx, key); } @@ -254,7 +256,7 @@ static int generate_event_id(struct nostr_event *ev) } //fprintf(stderr, "commitment: '%.*s'\n", len, buf); - + sha256((struct sha256*)ev->id, buf, len); return 1; @@ -262,10 +264,8 @@ static int generate_event_id(struct nostr_event *ev) static int sign_event(secp256k1_context *ctx, struct key *key, struct nostr_event *ev) { - if (!make_sig(ctx, key, ev->id, ev->sig)) { - fprintf(stderr, "Signature generation failed\n"); + if (!make_sig(ctx, key, ev->id, ev->sig)) return 0; - } return 1; } @@ -309,7 +309,7 @@ static int print_event(struct nostr_event *ev, int envelope) printf("]"); printf("\n"); - + return 1; } @@ -327,7 +327,7 @@ static void make_event_from_args(struct nostr_event *ev, struct args *args) static int parse_num(const char *arg, uint64_t *t) { - *t = strtol(arg, NULL, 10); + *t = strtol(arg, NULL, 10); return errno != EINVAL; } @@ -363,6 +363,13 @@ static int parse_args(int argc, const char *argv[], struct args *args) args->flags |= HAS_KIND; } else if (!strcmp(arg, "--envelope")) { args->flags |= HAS_ENVELOPE; + } else if (!strcmp(arg, "--dm")) { + arg = *argv++; argc--; + if (!hex_decode(arg, strlen(arg), args->encrypt_to, 32)) { + fprintf(stderr, "could not decode encrypt-to pubkey"); + return 0; + } + args->flags |= HAS_ENCRYPT; } else if (!strncmp(arg, "--", 2)) { fprintf(stderr, "unknown argument: %s\n", arg); return 0; @@ -372,6 +379,144 @@ static int parse_args(int argc, const char *argv[], struct args *args) return 1; } +static int nostr_add_tag(struct nostr_event *ev, const char *t1, const char *t2) +{ + struct nostr_tag *tag; + + if (ev->num_tags + 1 > MAX_TAGS) + return 0; + + tag = &ev->tags[ev->num_tags++]; + tag->strs[0] = t1; + tag->strs[1] = t2; + tag->num_elems = 2; + return 1; +} + +static int aes_encrypt(unsigned char *key, unsigned char *iv, + unsigned char *buf, size_t buflen) +{ + struct AES_ctx ctx; + unsigned char padding; + int i; + struct cursor cur; + + padding = 16 - (buflen % 16); + make_cursor(buf, buf + buflen + padding, &cur); + cur.p += buflen; + //fprintf(stderr, "aes_encrypt: len %ld, padding %d\n", buflen, padding); + + for (i = 0; i < padding; i++) { + if (!cursor_push_byte(&cur, padding)) { + return 0; + } + } + assert(cur.p == cur.end); + assert((cur.p - cur.start) % 16 == 0); + + AES_init_ctx_iv(&ctx, key, iv); + //fprintf(stderr, "encrypting %ld bytes: ", cur.p - cur.start); + //print_hex(cur.start, cur.p - cur.start); + AES_CBC_encrypt_buffer(&ctx, cur.start, cur.p - cur.start); + + return cur.p - cur.start; +} + +static int copyx(unsigned char *output, const unsigned char *x32, const unsigned char *y32, void *data) { + memcpy(output, x32, 32); + return 1; +} + +static int make_encrypted_dm(secp256k1_context *ctx, struct key *key, + struct nostr_event *ev, unsigned char nostr_pubkey[32]) +{ + size_t inl = strlen(ev->content); + int enclen = inl + 16; + size_t buflen = enclen * 3 + 65 * 10; + unsigned char *buf = malloc(buflen); + unsigned char shared_secret[32]; + unsigned char iv[16]; + unsigned char compressed_pubkey[33]; + int content_len = strlen(ev->content); + unsigned char encbuf[content_len + (content_len % 16) + 1]; + struct cursor cur; + secp256k1_pubkey pubkey; + + compressed_pubkey[0] = 2; + memcpy(&compressed_pubkey[1], nostr_pubkey, 32); + + make_cursor(buf, buf + buflen, &cur); + + if (!secp256k1_ec_seckey_verify(ctx, key->secret)) { + fprintf(stderr, "make_encrypted_dm: ec_seckey_verify failed\n"); + return 0; + } + + if (!secp256k1_ec_pubkey_parse(ctx, &pubkey, compressed_pubkey, sizeof(compressed_pubkey))) { + fprintf(stderr, "make_encrypted_dm: ec_pubkey_parse failed\n"); + return 0; + } + + if (!secp256k1_ecdh(ctx, shared_secret, &pubkey, key->secret, copyx, NULL)) { + fprintf(stderr, "make_encrypted_dm: secp256k1_ecdh failed\n"); + return 0; + } + + if (!fill_random(iv, sizeof(iv))) { + fprintf(stderr, "make_encrypted_dm: fill_random failed\n"); + return 0; + } + + fprintf(stderr, "shared secret: "); + print_hex(shared_secret, 32); + + memcpy(encbuf, ev->content, strlen(ev->content)); + enclen = aes_encrypt(shared_secret, iv, encbuf, strlen(ev->content)); + if (enclen == 0) { + fprintf(stderr, "make_encrypted_dm: aes_encrypt failed\n"); + free(buf); + free(encbuf); + return 0; + } + + if ((enclen = base64_encode((char *)buf, buflen, (const char*)encbuf, enclen)) == -1) { + fprintf(stderr, "make_encrypted_dm: base64 encode of encrypted fata failed\n"); + return 0; + } + cur.p += enclen; + + if (!cursor_push_str(&cur, "?iv=")) { + fprintf(stderr, "make_encrypted_dm: buffer too small\n"); + return 0; + } + + if ((enclen = base64_encode((char *)cur.p, cur.end - cur.p, (const char*)iv, 16)) == -1) { + fprintf(stderr, "make_encrypted_dm: base64 encode of iv failed\n"); + return 0; + } + cur.p += enclen; + + if (!cursor_push_byte(&cur, 0)) { + fprintf(stderr, "make_encrypted_dm: out of memory by 1 byte!\n"); + return 0; + } + + ev->content = (const char*)cur.start; + ev->kind = 4; + + if (!hex_encode(nostr_pubkey, 32, (char*)cur.p, cur.end - cur.p)) + return 0; + + if (!nostr_add_tag(ev, "p", (const char*)cur.p)) { + fprintf(stderr, "too many tags\n"); + return 0; + } + + cur.p += 65; + + return 1; +} + int main(int argc, const char *argv[]) { struct args args = {0}; @@ -396,11 +541,18 @@ int main(int argc, const char *argv[]) } } else { if (!generate_key(ctx, &key)) { - fprintf(stderr, "could not generate key"); + fprintf(stderr, "could not generate key\n"); return 4; } } + if (args.flags & HAS_ENCRYPT) { + if (!make_encrypted_dm(ctx, &key, &ev, args.encrypt_to)) { + fprintf(stderr, "error making encrypted dm\n"); + return 0; + } + } + // set the event's pubkey memcpy(ev.pubkey, key.pubkey, 32); diff --git a/random.h b/random.h @@ -65,9 +65,8 @@ static int fill_random(unsigned char* data, size_t size) { static void print_hex(unsigned char* data, size_t size) { size_t i; - printf("0x"); for (i = 0; i < size; i++) { - printf("%02x", data[i]); + fprintf(stderr, "%02x", data[i]); } - printf("\n"); + fprintf(stderr, "\n"); } diff --git a/shell.nix b/shell.nix @@ -1,5 +1,5 @@ { pkgs ? import <nixpkgs> {} }: with pkgs; mkShell { - buildInputs = [ secp256k1 ]; + buildInputs = [ secp256k1 openssl gdb ]; }