commit b6c0923f12a974e6f2bbc748be1a068d76e4ccb2
parent b60018f2bf101f46b5a693e28b2ee8b82e516fda
Author: Rusty Russell <rusty@rustcorp.com.au>
Date: Sat, 17 Aug 2024 14:36:21 +0930
ccan: copy ccan files into their own subdirectory.
This lets them be updated/bugfixed together. I just copied them for now,
didn't change anything else.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Diffstat:
28 files changed, 6085 insertions(+), 0 deletions(-)
diff --git a/ccan/README b/ccan/README
@@ -0,0 +1,5 @@
+CCAN imported from https://github.com/rustyrussell/ccan
+
+Use "make update-ccan" at top level to refresh from ../ccan.
+
+CCAN version: unknown
diff --git a/ccan/ccan/alignof/alignof.h b/ccan/ccan/alignof/alignof.h
@@ -0,0 +1,20 @@
+/* CC0 (Public domain) - see LICENSE file for details */
+#ifndef CCAN_ALIGNOF_H
+#define CCAN_ALIGNOF_H
+#include "../config.h"
+
+/**
+ * ALIGNOF - get the alignment of a type
+ * @t: the type to test
+ *
+ * This returns a safe alignment for the given type.
+ */
+#if HAVE_ALIGNOF
+/* A GCC extension. */
+#define ALIGNOF(t) __alignof__(t)
+#else
+/* Alignment by measuring structure padding. */
+#define ALIGNOF(t) ((char *)(&((struct { char c; t _h; } *)0)->_h) - (char *)0)
+#endif
+
+#endif /* CCAN_ALIGNOF_H */
diff --git a/ccan/ccan/array_size/array_size.h b/ccan/ccan/array_size/array_size.h
@@ -0,0 +1,26 @@
+/* CC0 (Public domain) - see LICENSE file for details */
+#ifndef CCAN_ARRAY_SIZE_H
+#define CCAN_ARRAY_SIZE_H
+#include "../config.h"
+#include "build_assert.h"
+
+/**
+ * ARRAY_SIZE - get the number of elements in a visible array
+ * @arr: the array whose size you want.
+ *
+ * This does not work on pointers, or arrays declared as [], or
+ * function parameters. With correct compiler support, such usage
+ * will cause a build error (see build_assert).
+ */
+#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + _array_size_chk(arr))
+
+#if HAVE_BUILTIN_TYPES_COMPATIBLE_P && HAVE_TYPEOF
+/* Two gcc extensions.
+ * &a[0] degrades to a pointer: a different type from an array */
+#define _array_size_chk(arr) \
+ BUILD_ASSERT_OR_ZERO(!__builtin_types_compatible_p(typeof(arr), \
+ typeof(&(arr)[0])))
+#else
+#define _array_size_chk(arr) 0
+#endif
+#endif /* CCAN_ALIGNOF_H */
diff --git a/ccan/ccan/build_assert/build_assert.h b/ccan/ccan/build_assert/build_assert.h
@@ -0,0 +1,40 @@
+/* CC0 (Public domain) - see LICENSE file for details */
+#ifndef CCAN_BUILD_ASSERT_H
+#define CCAN_BUILD_ASSERT_H
+
+/**
+ * BUILD_ASSERT - assert a build-time dependency.
+ * @cond: the compile-time condition which must be true.
+ *
+ * Your compile will fail if the condition isn't true, or can't be evaluated
+ * by the compiler. This can only be used within a function.
+ *
+ * Example:
+ * #include <stddef.h>
+ * ...
+ * static char *foo_to_char(struct foo *foo)
+ * {
+ * // This code needs string to be at start of foo.
+ * BUILD_ASSERT(offsetof(struct foo, string) == 0);
+ * return (char *)foo;
+ * }
+ */
+#define BUILD_ASSERT(cond) \
+ do { (void) sizeof(char [1 - 2*!(cond)]); } while(0)
+
+/**
+ * BUILD_ASSERT_OR_ZERO - assert a build-time dependency, as an expression.
+ * @cond: the compile-time condition which must be true.
+ *
+ * Your compile will fail if the condition isn't true, or can't be evaluated
+ * by the compiler. This can be used in an expression: its value is "0".
+ *
+ * Example:
+ * #define foo_to_char(foo) \
+ * ((char *)(foo) \
+ * + BUILD_ASSERT_OR_ZERO(offsetof(struct foo, string) == 0))
+ */
+#define BUILD_ASSERT_OR_ZERO(cond) \
+ (sizeof(char [1 - 2*!(cond)]) - 1)
+
+#endif /* CCAN_BUILD_ASSERT_H */
diff --git a/ccan/ccan/check_type/check_type.h b/ccan/ccan/check_type/check_type.h
@@ -0,0 +1,64 @@
+/* CC0 (Public domain) - see LICENSE file for details */
+#ifndef CCAN_CHECK_TYPE_H
+#define CCAN_CHECK_TYPE_H
+#include "../config.h"
+
+/**
+ * check_type - issue a warning or build failure if type is not correct.
+ * @expr: the expression whose type we should check (not evaluated).
+ * @type: the exact type we expect the expression to be.
+ *
+ * This macro is usually used within other macros to try to ensure that a macro
+ * argument is of the expected type. No type promotion of the expression is
+ * done: an unsigned int is not the same as an int!
+ *
+ * check_type() always evaluates to 0.
+ *
+ * If your compiler does not support typeof, then the best we can do is fail
+ * to compile if the sizes of the types are unequal (a less complete check).
+ *
+ * Example:
+ * // They should always pass a 64-bit value to _set_some_value!
+ * #define set_some_value(expr) \
+ * _set_some_value((check_type((expr), uint64_t), (expr)))
+ */
+
+/**
+ * check_types_match - issue a warning or build failure if types are not same.
+ * @expr1: the first expression (not evaluated).
+ * @expr2: the second expression (not evaluated).
+ *
+ * This macro is usually used within other macros to try to ensure that
+ * arguments are of identical types. No type promotion of the expressions is
+ * done: an unsigned int is not the same as an int!
+ *
+ * check_types_match() always evaluates to 0.
+ *
+ * If your compiler does not support typeof, then the best we can do is fail
+ * to compile if the sizes of the types are unequal (a less complete check).
+ *
+ * Example:
+ * // Do subtraction to get to enclosing type, but make sure that
+ * // pointer is of correct type for that member.
+ * #define container_of(mbr_ptr, encl_type, mbr) \
+ * (check_types_match((mbr_ptr), &((encl_type *)0)->mbr), \
+ * ((encl_type *) \
+ * ((char *)(mbr_ptr) - offsetof(encl_type, mbr))))
+ */
+#if HAVE_TYPEOF
+#define check_type(expr, type) \
+ ((typeof(expr) *)0 != (type *)0)
+
+#define check_types_match(expr1, expr2) \
+ ((typeof(expr1) *)0 != (typeof(expr2) *)0)
+#else
+#include <ccan/build_assert/build_assert.h>
+/* Without typeof, we can only test the sizes. */
+#define check_type(expr, type) \
+ BUILD_ASSERT_OR_ZERO(sizeof(expr) == sizeof(type))
+
+#define check_types_match(expr1, expr2) \
+ BUILD_ASSERT_OR_ZERO(sizeof(expr1) == sizeof(expr2))
+#endif /* HAVE_TYPEOF */
+
+#endif /* CCAN_CHECK_TYPE_H */
diff --git a/ccan/ccan/compiler/compiler.h b/ccan/ccan/compiler/compiler.h
@@ -0,0 +1,323 @@
+/* CC0 (Public domain) - see LICENSE file for details */
+#ifndef CCAN_COMPILER_H
+#define CCAN_COMPILER_H
+#include "config.h"
+
+#if HAVE_UNALIGNED_ACCESS
+#define alignment_ok(p, n) 1
+#else
+#define alignment_ok(p, n) ((size_t)(p) % (n) == 0)
+#endif
+
+#ifndef COLD
+#if HAVE_ATTRIBUTE_COLD
+/**
+ * COLD - a function is unlikely to be called.
+ *
+ * Used to mark an unlikely code path and optimize appropriately.
+ * It is usually used on logging or error routines.
+ *
+ * Example:
+ * static void COLD moan(const char *reason)
+ * {
+ * fprintf(stderr, "Error: %s (%s)\n", reason, strerror(errno));
+ * }
+ */
+#define COLD __attribute__((__cold__))
+#else
+#define COLD
+#endif
+#endif
+
+#ifndef NORETURN
+#if HAVE_ATTRIBUTE_NORETURN
+/**
+ * NORETURN - a function does not return
+ *
+ * Used to mark a function which exits; useful for suppressing warnings.
+ *
+ * Example:
+ * static void NORETURN fail(const char *reason)
+ * {
+ * fprintf(stderr, "Error: %s (%s)\n", reason, strerror(errno));
+ * exit(1);
+ * }
+ */
+#define NORETURN __attribute__((__noreturn__))
+#else
+#define NORETURN
+#endif
+#endif
+
+#ifndef PRINTF_FMT
+#if HAVE_ATTRIBUTE_PRINTF
+/**
+ * PRINTF_FMT - a function takes printf-style arguments
+ * @nfmt: the 1-based number of the function's format argument.
+ * @narg: the 1-based number of the function's first variable argument.
+ *
+ * This allows the compiler to check your parameters as it does for printf().
+ *
+ * Example:
+ * void PRINTF_FMT(2,3) my_printf(const char *prefix, const char *fmt, ...);
+ */
+#define PRINTF_FMT(nfmt, narg) \
+ __attribute__((format(__printf__, nfmt, narg)))
+#else
+#define PRINTF_FMT(nfmt, narg)
+#endif
+#endif
+
+#ifndef CONST_FUNCTION
+#if HAVE_ATTRIBUTE_CONST
+/**
+ * CONST_FUNCTION - a function's return depends only on its argument
+ *
+ * This allows the compiler to assume that the function will return the exact
+ * same value for the exact same arguments. This implies that the function
+ * must not use global variables, or dereference pointer arguments.
+ */
+#define CONST_FUNCTION __attribute__((__const__))
+#else
+#define CONST_FUNCTION
+#endif
+
+#ifndef PURE_FUNCTION
+#if HAVE_ATTRIBUTE_PURE
+/**
+ * PURE_FUNCTION - a function is pure
+ *
+ * A pure function is one that has no side effects other than it's return value
+ * and uses no inputs other than it's arguments and global variables.
+ */
+#define PURE_FUNCTION __attribute__((__pure__))
+#else
+#define PURE_FUNCTION
+#endif
+#endif
+#endif
+
+#if HAVE_ATTRIBUTE_UNUSED
+#ifndef UNNEEDED
+/**
+ * UNNEEDED - a variable/function may not be needed
+ *
+ * This suppresses warnings about unused variables or functions, but tells
+ * the compiler that if it is unused it need not emit it into the source code.
+ *
+ * Example:
+ * // With some preprocessor options, this is unnecessary.
+ * static UNNEEDED int counter;
+ *
+ * // With some preprocessor options, this is unnecessary.
+ * static UNNEEDED void add_to_counter(int add)
+ * {
+ * counter += add;
+ * }
+ */
+#define UNNEEDED __attribute__((__unused__))
+#endif
+
+#ifndef NEEDED
+#if HAVE_ATTRIBUTE_USED
+/**
+ * NEEDED - a variable/function is needed
+ *
+ * This suppresses warnings about unused variables or functions, but tells
+ * the compiler that it must exist even if it (seems) unused.
+ *
+ * Example:
+ * // Even if this is unused, these are vital for debugging.
+ * static NEEDED int counter;
+ * static NEEDED void dump_counter(void)
+ * {
+ * printf("Counter is %i\n", counter);
+ * }
+ */
+#define NEEDED __attribute__((__used__))
+#else
+/* Before used, unused functions and vars were always emitted. */
+#define NEEDED __attribute__((__unused__))
+#endif
+#endif
+
+#ifndef UNUSED
+/**
+ * UNUSED - a parameter is unused
+ *
+ * Some compilers (eg. gcc with -W or -Wunused) warn about unused
+ * function parameters. This suppresses such warnings and indicates
+ * to the reader that it's deliberate.
+ *
+ * Example:
+ * // This is used as a callback, so needs to have this prototype.
+ * static int some_callback(void *unused UNUSED)
+ * {
+ * return 0;
+ * }
+ */
+#define UNUSED __attribute__((__unused__))
+#endif
+#else
+#ifndef UNNEEDED
+#define UNNEEDED
+#endif
+#ifndef NEEDED
+#define NEEDED
+#endif
+#ifndef UNUSED
+#define UNUSED
+#endif
+#endif
+
+#ifndef IS_COMPILE_CONSTANT
+#if HAVE_BUILTIN_CONSTANT_P
+/**
+ * IS_COMPILE_CONSTANT - does the compiler know the value of this expression?
+ * @expr: the expression to evaluate
+ *
+ * When an expression manipulation is complicated, it is usually better to
+ * implement it in a function. However, if the expression being manipulated is
+ * known at compile time, it is better to have the compiler see the entire
+ * expression so it can simply substitute the result.
+ *
+ * This can be done using the IS_COMPILE_CONSTANT() macro.
+ *
+ * Example:
+ * enum greek { ALPHA, BETA, GAMMA, DELTA, EPSILON };
+ *
+ * // Out-of-line version.
+ * const char *greek_name(enum greek greek);
+ *
+ * // Inline version.
+ * static inline const char *_greek_name(enum greek greek)
+ * {
+ * switch (greek) {
+ * case ALPHA: return "alpha";
+ * case BETA: return "beta";
+ * case GAMMA: return "gamma";
+ * case DELTA: return "delta";
+ * case EPSILON: return "epsilon";
+ * default: return "**INVALID**";
+ * }
+ * }
+ *
+ * // Use inline if compiler knows answer. Otherwise call function
+ * // to avoid copies of the same code everywhere.
+ * #define greek_name(g) \
+ * (IS_COMPILE_CONSTANT(greek) ? _greek_name(g) : greek_name(g))
+ */
+#define IS_COMPILE_CONSTANT(expr) __builtin_constant_p(expr)
+#else
+/* If we don't know, assume it's not. */
+#define IS_COMPILE_CONSTANT(expr) 0
+#endif
+#endif
+
+#ifndef WARN_UNUSED_RESULT
+#if HAVE_WARN_UNUSED_RESULT
+/**
+ * WARN_UNUSED_RESULT - warn if a function return value is unused.
+ *
+ * Used to mark a function where it is extremely unlikely that the caller
+ * can ignore the result, eg realloc().
+ *
+ * Example:
+ * // buf param may be freed by this; need return value!
+ * static char *WARN_UNUSED_RESULT enlarge(char *buf, unsigned *size)
+ * {
+ * return realloc(buf, (*size) *= 2);
+ * }
+ */
+#define WARN_UNUSED_RESULT __attribute__((__warn_unused_result__))
+#else
+#define WARN_UNUSED_RESULT
+#endif
+#endif
+
+
+#if HAVE_ATTRIBUTE_DEPRECATED
+/**
+ * WARN_DEPRECATED - warn that a function/type/variable is deprecated when used.
+ *
+ * Used to mark a function, type or variable should not be used.
+ *
+ * Example:
+ * WARN_DEPRECATED char *oldfunc(char *buf);
+ */
+#define WARN_DEPRECATED __attribute__((__deprecated__))
+#else
+#define WARN_DEPRECATED
+#endif
+
+
+#if HAVE_ATTRIBUTE_NONNULL
+/**
+ * NO_NULL_ARGS - specify that no arguments to this function can be NULL.
+ *
+ * The compiler will warn if any pointer args are NULL.
+ *
+ * Example:
+ * NO_NULL_ARGS char *my_copy(char *buf);
+ */
+#define NO_NULL_ARGS __attribute__((__nonnull__))
+
+/**
+ * NON_NULL_ARGS - specify that some arguments to this function can't be NULL.
+ * @...: 1-based argument numbers for which args can't be NULL.
+ *
+ * The compiler will warn if any of the specified pointer args are NULL.
+ *
+ * Example:
+ * char *my_copy2(char *buf, char *maybenull) NON_NULL_ARGS(1);
+ */
+#define NON_NULL_ARGS(...) __attribute__((__nonnull__(__VA_ARGS__)))
+#else
+#define NO_NULL_ARGS
+#define NON_NULL_ARGS(...)
+#endif
+
+#if HAVE_ATTRIBUTE_RETURNS_NONNULL
+/**
+ * RETURNS_NONNULL - specify that this function cannot return NULL.
+ *
+ * Mainly an optimization opportunity, but can also suppress warnings.
+ *
+ * Example:
+ * RETURNS_NONNULL char *my_copy(char *buf);
+ */
+#define RETURNS_NONNULL __attribute__((__returns_nonnull__))
+#else
+#define RETURNS_NONNULL
+#endif
+
+#if HAVE_ATTRIBUTE_SENTINEL
+/**
+ * LAST_ARG_NULL - specify the last argument of a variadic function must be NULL.
+ *
+ * The compiler will warn if the last argument isn't NULL.
+ *
+ * Example:
+ * char *join_string(char *buf, ...) LAST_ARG_NULL;
+ */
+#define LAST_ARG_NULL __attribute__((__sentinel__))
+#else
+#define LAST_ARG_NULL
+#endif
+
+#if HAVE_BUILTIN_CPU_SUPPORTS
+/**
+ * cpu_supports - test if current CPU supports the named feature.
+ *
+ * This takes a literal string, and currently only works on glibc platforms.
+ *
+ * Example:
+ * if (cpu_supports("mmx"))
+ * printf("MMX support engaged!\n");
+ */
+#define cpu_supports(x) __builtin_cpu_supports(x)
+#else
+#define cpu_supports(x) 0
+#endif /* HAVE_BUILTIN_CPU_SUPPORTS */
+
+#endif /* CCAN_COMPILER_H */
diff --git a/ccan/ccan/container_of/container_of.h b/ccan/ccan/container_of/container_of.h
@@ -0,0 +1,145 @@
+/* CC0 (Public domain) - see LICENSE file for details */
+#ifndef CCAN_CONTAINER_OF_H
+#define CCAN_CONTAINER_OF_H
+#include <stddef.h>
+
+#include "../config.h"
+#include "check_type.h"
+
+/**
+ * container_of - get pointer to enclosing structure
+ * @member_ptr: pointer to the structure member
+ * @containing_type: the type this member is within
+ * @member: the name of this member within the structure.
+ *
+ * Given a pointer to a member of a structure, this macro does pointer
+ * subtraction to return the pointer to the enclosing type.
+ *
+ * Example:
+ * struct foo {
+ * int fielda, fieldb;
+ * // ...
+ * };
+ * struct info {
+ * int some_other_field;
+ * struct foo my_foo;
+ * };
+ *
+ * static struct info *foo_to_info(struct foo *foo)
+ * {
+ * return container_of(foo, struct info, my_foo);
+ * }
+ */
+#define container_of(member_ptr, containing_type, member) \
+ ((containing_type *) \
+ ((char *)(member_ptr) \
+ - container_off(containing_type, member)) \
+ + check_types_match(*(member_ptr), ((containing_type *)0)->member))
+
+
+/**
+ * container_of_or_null - get pointer to enclosing structure, or NULL
+ * @member_ptr: pointer to the structure member
+ * @containing_type: the type this member is within
+ * @member: the name of this member within the structure.
+ *
+ * Given a pointer to a member of a structure, this macro does pointer
+ * subtraction to return the pointer to the enclosing type, unless it
+ * is given NULL, in which case it also returns NULL.
+ *
+ * Example:
+ * struct foo {
+ * int fielda, fieldb;
+ * // ...
+ * };
+ * struct info {
+ * int some_other_field;
+ * struct foo my_foo;
+ * };
+ *
+ * static struct info *foo_to_info_allowing_null(struct foo *foo)
+ * {
+ * return container_of_or_null(foo, struct info, my_foo);
+ * }
+ */
+static inline char *container_of_or_null_(void *member_ptr, size_t offset)
+{
+ return member_ptr ? (char *)member_ptr - offset : NULL;
+}
+#define container_of_or_null(member_ptr, containing_type, member) \
+ ((containing_type *) \
+ container_of_or_null_(member_ptr, \
+ container_off(containing_type, member)) \
+ + check_types_match(*(member_ptr), ((containing_type *)0)->member))
+
+/**
+ * container_off - get offset to enclosing structure
+ * @containing_type: the type this member is within
+ * @member: the name of this member within the structure.
+ *
+ * Given a pointer to a member of a structure, this macro does
+ * typechecking and figures out the offset to the enclosing type.
+ *
+ * Example:
+ * struct foo {
+ * int fielda, fieldb;
+ * // ...
+ * };
+ * struct info {
+ * int some_other_field;
+ * struct foo my_foo;
+ * };
+ *
+ * static struct info *foo_to_info(struct foo *foo)
+ * {
+ * size_t off = container_off(struct info, my_foo);
+ * return (void *)((char *)foo - off);
+ * }
+ */
+#define container_off(containing_type, member) \
+ offsetof(containing_type, member)
+
+/**
+ * container_of_var - get pointer to enclosing structure using a variable
+ * @member_ptr: pointer to the structure member
+ * @container_var: a pointer of same type as this member's container
+ * @member: the name of this member within the structure.
+ *
+ * Given a pointer to a member of a structure, this macro does pointer
+ * subtraction to return the pointer to the enclosing type.
+ *
+ * Example:
+ * static struct info *foo_to_i(struct foo *foo)
+ * {
+ * struct info *i = container_of_var(foo, i, my_foo);
+ * return i;
+ * }
+ */
+#if HAVE_TYPEOF
+#define container_of_var(member_ptr, container_var, member) \
+ container_of(member_ptr, typeof(*container_var), member)
+#else
+#define container_of_var(member_ptr, container_var, member) \
+ ((void *)((char *)(member_ptr) - \
+ container_off_var(container_var, member)))
+#endif
+
+/**
+ * container_off_var - get offset of a field in enclosing structure
+ * @container_var: a pointer to a container structure
+ * @member: the name of a member within the structure.
+ *
+ * Given (any) pointer to a structure and a its member name, this
+ * macro does pointer subtraction to return offset of member in a
+ * structure memory layout.
+ *
+ */
+#if HAVE_TYPEOF
+#define container_off_var(var, member) \
+ container_off(typeof(*var), member)
+#else
+#define container_off_var(var, member) \
+ ((const char *)&(var)->member - (const char *)(var))
+#endif
+
+#endif /* CCAN_CONTAINER_OF_H */
diff --git a/ccan/ccan/cppmagic/cppmagic.h b/ccan/ccan/cppmagic/cppmagic.h
@@ -0,0 +1,191 @@
+/* MIT (BSD) license - see LICENSE file for details */
+#ifndef CCAN_CPPMAGIC_H
+#define CCAN_CPPMAGIC_H
+
+/**
+ * CPPMAGIC_NOTHING - expands to nothing
+ */
+#define CPPMAGIC_NOTHING()
+
+/**
+ * CPPMAGIC_STRINGIFY - convert arguments to a string literal
+ */
+#define _CPPMAGIC_STRINGIFY(...) #__VA_ARGS__
+#define CPPMAGIC_STRINGIFY(...) _CPPMAGIC_STRINGIFY(__VA_ARGS__)
+
+/**
+ * CPPMAGIC_GLUE2 - glue arguments together
+ *
+ * CPPMAGIC_GLUE2(@a_, @b_)
+ * expands to the expansion of @a_ followed immediately
+ * (combining tokens) by the expansion of @b_
+ */
+#define _CPPMAGIC_GLUE2(a_, b_) a_##b_
+#define CPPMAGIC_GLUE2(a_, b_) _CPPMAGIC_GLUE2(a_, b_)
+
+/**
+ * CPPMAGIC_1ST - return 1st argument
+ *
+ * CPPMAGIC_1ST(@a_, ...)
+ * expands to the expansion of @a_
+ */
+#define CPPMAGIC_1ST(a_, ...) a_
+
+/**
+ * CPPMAGIC_2ND - return 2nd argument
+ *
+ * CPPMAGIC_2ST(@a_, @b_, ...)
+ * expands to the expansion of @b_
+ */
+#define CPPMAGIC_2ND(a_, b_, ...) b_
+
+/**
+ * CPPMAGIC_ISZERO - is argument '0'
+ *
+ * CPPMAGIC_ISZERO(@a)
+ * expands to '1' if @a is '0', otherwise expands to '0'.
+ */
+#define _CPPMAGIC_ISPROBE(...) CPPMAGIC_2ND(__VA_ARGS__, 0)
+#define _CPPMAGIC_PROBE() $, 1
+#define _CPPMAGIC_ISZERO_0 _CPPMAGIC_PROBE()
+#define CPPMAGIC_ISZERO(a_) \
+ _CPPMAGIC_ISPROBE(CPPMAGIC_GLUE2(_CPPMAGIC_ISZERO_, a_))
+
+/**
+ * CPPMAGIC_NONZERO - is argument not '0'
+ *
+ * CPPMAGIC_NONZERO(@a)
+ * expands to '0' if @a is '0', otherwise expands to '1'.
+ */
+#define CPPMAGIC_NONZERO(a_) CPPMAGIC_ISZERO(CPPMAGIC_ISZERO(a_))
+
+/**
+ * CPPMAGIC_NONEMPTY - does the macro have any arguments?
+ *
+ * CPPMAGIC_NONEMPTY()
+ * expands to '0'
+ * CPPMAGIC_NONEMPTY(@a)
+ * CPPMAGIC_NONEMPTY(@a, ...)
+ * expand to '1'
+ */
+#define _CPPMAGIC_EOA() 0
+#define CPPMAGIC_NONEMPTY(...) \
+ CPPMAGIC_NONZERO(CPPMAGIC_1ST(_CPPMAGIC_EOA __VA_ARGS__)())
+
+/**
+ * CPPMAGIC_ISEMPTY - does the macro have no arguments?
+ *
+ * CPPMAGIC_ISEMPTY()
+ * expands to '1'
+ * CPPMAGIC_ISEMPTY(@a)
+ * CPPMAGIC_ISEMPTY(@a, ...)
+ * expand to '0'
+ */
+#define CPPMAGIC_ISEMPTY(...) \
+ CPPMAGIC_ISZERO(CPPMAGIC_NONEMPTY(__VA_ARGS__))
+
+/*
+ * CPPMAGIC_IFELSE - preprocessor conditional
+ *
+ * CPPMAGIC_IFELSE(@cond)(@if)(@else)
+ * expands to @else if @cond is '0', otherwise expands to @if
+ */
+#define _CPPMAGIC_IF_0(...) _CPPMAGIC_IF_0_ELSE
+#define _CPPMAGIC_IF_1(...) __VA_ARGS__ _CPPMAGIC_IF_1_ELSE
+#define _CPPMAGIC_IF_0_ELSE(...) __VA_ARGS__
+#define _CPPMAGIC_IF_1_ELSE(...)
+#define _CPPMAGIC_IFELSE(cond_) CPPMAGIC_GLUE2(_CPPMAGIC_IF_, cond_)
+#define CPPMAGIC_IFELSE(cond_) \
+ _CPPMAGIC_IFELSE(CPPMAGIC_NONZERO(cond_))
+
+/**
+ * CPPMAGIC_EVAL - force multiple expansion passes
+ *
+ * Forces macros in the arguments to be expanded repeatedly (up to
+ * 1024 times) even when CPP would usually stop expanding.
+ */
+#define CPPMAGIC_EVAL1(...) __VA_ARGS__
+#define CPPMAGIC_EVAL2(...) \
+ CPPMAGIC_EVAL1(CPPMAGIC_EVAL1(__VA_ARGS__))
+#define CPPMAGIC_EVAL4(...) \
+ CPPMAGIC_EVAL2(CPPMAGIC_EVAL2(__VA_ARGS__))
+#define CPPMAGIC_EVAL8(...) \
+ CPPMAGIC_EVAL4(CPPMAGIC_EVAL4(__VA_ARGS__))
+#define CPPMAGIC_EVAL16(...) \
+ CPPMAGIC_EVAL8(CPPMAGIC_EVAL8(__VA_ARGS__))
+#define CPPMAGIC_EVAL32(...) \
+ CPPMAGIC_EVAL16(CPPMAGIC_EVAL16(__VA_ARGS__))
+#define CPPMAGIC_EVAL64(...) \
+ CPPMAGIC_EVAL32(CPPMAGIC_EVAL32(__VA_ARGS__))
+#define CPPMAGIC_EVAL128(...) \
+ CPPMAGIC_EVAL64(CPPMAGIC_EVAL64(__VA_ARGS__))
+#define CPPMAGIC_EVAL256(...) \
+ CPPMAGIC_EVAL128(CPPMAGIC_EVAL128(__VA_ARGS__))
+#define CPPMAGIC_EVAL512(...) \
+ CPPMAGIC_EVAL256(CPPMAGIC_EVAL256(__VA_ARGS__))
+#define CPPMAGIC_EVAL1024(...) \
+ CPPMAGIC_EVAL512(CPPMAGIC_EVAL512(__VA_ARGS__))
+#define CPPMAGIC_EVAL(...) CPPMAGIC_EVAL1024(__VA_ARGS__)
+
+/**
+ * CPPMAGIC_DEFER1, CPPMAGIC_DEFER2 - defer expansion
+ */
+#define CPPMAGIC_DEFER1(a_) a_ CPPMAGIC_NOTHING()
+#define CPPMAGIC_DEFER2(a_) a_ CPPMAGIC_NOTHING CPPMAGIC_NOTHING()()
+
+/**
+ * CPPMAGIC_MAP - iterate another macro across arguments
+ * @m: name of a one argument macro
+ *
+ * CPPMAGIC_MAP(@m, @a1, @a2, ... @an)
+ * expands to the expansion of @m(@a1) , @m(@a2) , ... , @m(@an)
+ */
+#define _CPPMAGIC_MAP_() _CPPMAGIC_MAP
+#define _CPPMAGIC_MAP(m_, a_, ...) \
+ m_(a_) \
+ CPPMAGIC_IFELSE(CPPMAGIC_NONEMPTY(__VA_ARGS__)) \
+ (, CPPMAGIC_DEFER2(_CPPMAGIC_MAP_)()(m_, __VA_ARGS__)) \
+ ()
+#define CPPMAGIC_MAP(m_, ...) \
+ CPPMAGIC_IFELSE(CPPMAGIC_NONEMPTY(__VA_ARGS__)) \
+ (CPPMAGIC_EVAL(_CPPMAGIC_MAP(m_, __VA_ARGS__))) \
+ ()
+
+/**
+ * CPPMAGIC_2MAP - iterate another macro across pairs of arguments
+ * @m: name of a two argument macro
+ *
+ * CPPMAGIC_2MAP(@m, @a1, @b1, @a2, @b2, ..., @an, @bn)
+ * expands to the expansion of
+ * @m(@a1, @b1) , @m(@a2, @b2) , ... , @m(@an, @bn)
+ */
+#define _CPPMAGIC_2MAP_() _CPPMAGIC_2MAP
+#define _CPPMAGIC_2MAP(m_, a_, b_, ...) \
+ m_(a_, b_) \
+ CPPMAGIC_IFELSE(CPPMAGIC_NONEMPTY(__VA_ARGS__)) \
+ (, CPPMAGIC_DEFER2(_CPPMAGIC_2MAP_)()(m_, __VA_ARGS__)) \
+ ()
+#define CPPMAGIC_2MAP(m_, ...) \
+ CPPMAGIC_IFELSE(CPPMAGIC_NONEMPTY(__VA_ARGS__)) \
+ (CPPMAGIC_EVAL(_CPPMAGIC_2MAP(m_, __VA_ARGS__))) \
+ ()
+
+/**
+ * CPPMAGIC_JOIN - separate arguments with given delimiter
+ * @d: delimiter
+ *
+ * CPPMAGIC_JOIN(@d, @a1, @a2, ..., @an)
+ * expands to the expansion of @a1 @d @a2 @d ... @d @an
+ */
+#define _CPPMAGIC_JOIN_() _CPPMAGIC_JOIN
+#define _CPPMAGIC_JOIN(d_, a_, ...) \
+ a_ \
+ CPPMAGIC_IFELSE(CPPMAGIC_NONEMPTY(__VA_ARGS__)) \
+ (d_ CPPMAGIC_DEFER2(_CPPMAGIC_JOIN_)()(d_, __VA_ARGS__)) \
+ ()
+#define CPPMAGIC_JOIN(d_, ...) \
+ CPPMAGIC_IFELSE(CPPMAGIC_NONEMPTY(__VA_ARGS__)) \
+ (CPPMAGIC_EVAL(_CPPMAGIC_JOIN(d_, __VA_ARGS__))) \
+ ()
+
+#endif /* CCAN_CPPMAGIC_H */
diff --git a/ccan/ccan/crypto/sha256/sha256.c b/ccan/ccan/crypto/sha256/sha256.c
@@ -0,0 +1,302 @@
+/* MIT (BSD) license - see LICENSE file for details */
+/* SHA256 core code translated from the Bitcoin project's C++:
+ *
+ * src/crypto/sha256.cpp commit 417532c8acb93c36c2b6fd052b7c11b6a2906aa2
+ * Copyright (c) 2014 The Bitcoin Core developers
+ * Distributed under the MIT software license, see the accompanying
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.
+ */
+#include "sha256.h"
+#include "endian.h"
+#include "compiler.h"
+#include <stdbool.h>
+#include <assert.h>
+#include <string.h>
+
+static void invalidate_sha256(struct sha256_ctx *ctx)
+{
+#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
+ ctx->c.md_len = 0;
+#else
+ ctx->bytes = (size_t)-1;
+#endif
+}
+
+static void check_sha256(struct sha256_ctx *ctx)
+{
+#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
+ assert(ctx->c.md_len != 0);
+#else
+ assert(ctx->bytes != (size_t)-1);
+#endif
+}
+
+#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
+void sha256_init(struct sha256_ctx *ctx)
+{
+ SHA256_Init(&ctx->c);
+}
+
+void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size)
+{
+ check_sha256(ctx);
+ SHA256_Update(&ctx->c, p, size);
+}
+
+void sha256_done(struct sha256_ctx *ctx, struct sha256 *res)
+{
+ SHA256_Final(res->u.u8, &ctx->c);
+ invalidate_sha256(ctx);
+}
+#else
+static uint32_t Ch(uint32_t x, uint32_t y, uint32_t z)
+{
+ return z ^ (x & (y ^ z));
+}
+static uint32_t Maj(uint32_t x, uint32_t y, uint32_t z)
+{
+ return (x & y) | (z & (x | y));
+}
+static uint32_t Sigma0(uint32_t x)
+{
+ return (x >> 2 | x << 30) ^ (x >> 13 | x << 19) ^ (x >> 22 | x << 10);
+}
+static uint32_t Sigma1(uint32_t x)
+{
+ return (x >> 6 | x << 26) ^ (x >> 11 | x << 21) ^ (x >> 25 | x << 7);
+}
+static uint32_t sigma0(uint32_t x)
+{
+ return (x >> 7 | x << 25) ^ (x >> 18 | x << 14) ^ (x >> 3);
+}
+static uint32_t sigma1(uint32_t x)
+{
+ return (x >> 17 | x << 15) ^ (x >> 19 | x << 13) ^ (x >> 10);
+}
+
+/** One round of SHA-256. */
+static void Round(uint32_t a, uint32_t b, uint32_t c, uint32_t *d, uint32_t e, uint32_t f, uint32_t g, uint32_t *h, uint32_t k, uint32_t w)
+{
+ uint32_t t1 = *h + Sigma1(e) + Ch(e, f, g) + k + w;
+ uint32_t t2 = Sigma0(a) + Maj(a, b, c);
+ *d += t1;
+ *h = t1 + t2;
+}
+
+/** Perform one SHA-256 transformation, processing a 64-byte chunk. */
+static void Transform(uint32_t *s, const uint32_t *chunk)
+{
+ uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
+ uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
+
+ Round(a, b, c, &d, e, f, g, &h, 0x428a2f98, w0 = be32_to_cpu(chunk[0]));
+ Round(h, a, b, &c, d, e, f, &g, 0x71374491, w1 = be32_to_cpu(chunk[1]));
+ Round(g, h, a, &b, c, d, e, &f, 0xb5c0fbcf, w2 = be32_to_cpu(chunk[2]));
+ Round(f, g, h, &a, b, c, d, &e, 0xe9b5dba5, w3 = be32_to_cpu(chunk[3]));
+ Round(e, f, g, &h, a, b, c, &d, 0x3956c25b, w4 = be32_to_cpu(chunk[4]));
+ Round(d, e, f, &g, h, a, b, &c, 0x59f111f1, w5 = be32_to_cpu(chunk[5]));
+ Round(c, d, e, &f, g, h, a, &b, 0x923f82a4, w6 = be32_to_cpu(chunk[6]));
+ Round(b, c, d, &e, f, g, h, &a, 0xab1c5ed5, w7 = be32_to_cpu(chunk[7]));
+ Round(a, b, c, &d, e, f, g, &h, 0xd807aa98, w8 = be32_to_cpu(chunk[8]));
+ Round(h, a, b, &c, d, e, f, &g, 0x12835b01, w9 = be32_to_cpu(chunk[9]));
+ Round(g, h, a, &b, c, d, e, &f, 0x243185be, w10 = be32_to_cpu(chunk[10]));
+ Round(f, g, h, &a, b, c, d, &e, 0x550c7dc3, w11 = be32_to_cpu(chunk[11]));
+ Round(e, f, g, &h, a, b, c, &d, 0x72be5d74, w12 = be32_to_cpu(chunk[12]));
+ Round(d, e, f, &g, h, a, b, &c, 0x80deb1fe, w13 = be32_to_cpu(chunk[13]));
+ Round(c, d, e, &f, g, h, a, &b, 0x9bdc06a7, w14 = be32_to_cpu(chunk[14]));
+ Round(b, c, d, &e, f, g, h, &a, 0xc19bf174, w15 = be32_to_cpu(chunk[15]));
+
+ Round(a, b, c, &d, e, f, g, &h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1));
+ Round(h, a, b, &c, d, e, f, &g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2));
+ Round(g, h, a, &b, c, d, e, &f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3));
+ Round(f, g, h, &a, b, c, d, &e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4));
+ Round(e, f, g, &h, a, b, c, &d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5));
+ Round(d, e, f, &g, h, a, b, &c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6));
+ Round(c, d, e, &f, g, h, a, &b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7));
+ Round(b, c, d, &e, f, g, h, &a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8));
+ Round(a, b, c, &d, e, f, g, &h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9));
+ Round(h, a, b, &c, d, e, f, &g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10));
+ Round(g, h, a, &b, c, d, e, &f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11));
+ Round(f, g, h, &a, b, c, d, &e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12));
+ Round(e, f, g, &h, a, b, c, &d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13));
+ Round(d, e, f, &g, h, a, b, &c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14));
+ Round(c, d, e, &f, g, h, a, &b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15));
+ Round(b, c, d, &e, f, g, h, &a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0));
+
+ Round(a, b, c, &d, e, f, g, &h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1));
+ Round(h, a, b, &c, d, e, f, &g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2));
+ Round(g, h, a, &b, c, d, e, &f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3));
+ Round(f, g, h, &a, b, c, d, &e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4));
+ Round(e, f, g, &h, a, b, c, &d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5));
+ Round(d, e, f, &g, h, a, b, &c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6));
+ Round(c, d, e, &f, g, h, a, &b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7));
+ Round(b, c, d, &e, f, g, h, &a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8));
+ Round(a, b, c, &d, e, f, g, &h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9));
+ Round(h, a, b, &c, d, e, f, &g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10));
+ Round(g, h, a, &b, c, d, e, &f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11));
+ Round(f, g, h, &a, b, c, d, &e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12));
+ Round(e, f, g, &h, a, b, c, &d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13));
+ Round(d, e, f, &g, h, a, b, &c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14));
+ Round(c, d, e, &f, g, h, a, &b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15));
+ Round(b, c, d, &e, f, g, h, &a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0));
+
+ Round(a, b, c, &d, e, f, g, &h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1));
+ Round(h, a, b, &c, d, e, f, &g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2));
+ Round(g, h, a, &b, c, d, e, &f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3));
+ Round(f, g, h, &a, b, c, d, &e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4));
+ Round(e, f, g, &h, a, b, c, &d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5));
+ Round(d, e, f, &g, h, a, b, &c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6));
+ Round(c, d, e, &f, g, h, a, &b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7));
+ Round(b, c, d, &e, f, g, h, &a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8));
+ Round(a, b, c, &d, e, f, g, &h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9));
+ Round(h, a, b, &c, d, e, f, &g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10));
+ Round(g, h, a, &b, c, d, e, &f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11));
+ Round(f, g, h, &a, b, c, d, &e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12));
+ Round(e, f, g, &h, a, b, c, &d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13));
+ Round(d, e, f, &g, h, a, b, &c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14));
+ Round(c, d, e, &f, g, h, a, &b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15));
+ Round(b, c, d, &e, f, g, h, &a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0));
+
+ s[0] += a;
+ s[1] += b;
+ s[2] += c;
+ s[3] += d;
+ s[4] += e;
+ s[5] += f;
+ s[6] += g;
+ s[7] += h;
+}
+
+
+static void add(struct sha256_ctx *ctx, const void *p, size_t len)
+{
+ const unsigned char *data = p;
+ size_t bufsize = ctx->bytes % 64;
+
+ if (bufsize + len >= 64) {
+ /* Fill the buffer, and process it. */
+ memcpy(ctx->buf.u8 + bufsize, data, 64 - bufsize);
+ ctx->bytes += 64 - bufsize;
+ data += 64 - bufsize;
+ len -= 64 - bufsize;
+ Transform(ctx->s, ctx->buf.u32);
+ bufsize = 0;
+ }
+
+ while (len >= 64) {
+ /* Process full chunks directly from the source. */
+ if (alignment_ok(data, sizeof(uint32_t)))
+ Transform(ctx->s, (const uint32_t *)data);
+ else {
+ memcpy(ctx->buf.u8, data, sizeof(ctx->buf));
+ Transform(ctx->s, ctx->buf.u32);
+ }
+ ctx->bytes += 64;
+ data += 64;
+ len -= 64;
+ }
+
+ if (len) {
+ /* Fill the buffer with what remains. */
+ memcpy(ctx->buf.u8 + bufsize, data, len);
+ ctx->bytes += len;
+ }
+}
+
+void sha256_init(struct sha256_ctx *ctx)
+{
+ struct sha256_ctx init = SHA256_INIT;
+ *ctx = init;
+}
+
+void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size)
+{
+ check_sha256(ctx);
+ add(ctx, p, size);
+}
+
+void sha256_done(struct sha256_ctx *ctx, struct sha256 *res)
+{
+ static const unsigned char pad[64] = {0x80};
+ uint64_t sizedesc;
+ size_t i;
+
+ sizedesc = cpu_to_be64((uint64_t)ctx->bytes << 3);
+ /* Add '1' bit to terminate, then all 0 bits, up to next block - 8. */
+ add(ctx, pad, 1 + ((128 - 8 - (ctx->bytes % 64) - 1) % 64));
+ /* Add number of bits of data (big endian) */
+ add(ctx, &sizedesc, 8);
+ for (i = 0; i < sizeof(ctx->s) / sizeof(ctx->s[0]); i++)
+ res->u.u32[i] = cpu_to_be32(ctx->s[i]);
+ invalidate_sha256(ctx);
+}
+#endif
+
+void sha256(struct sha256 *sha, const void *p, size_t size)
+{
+ struct sha256_ctx ctx;
+
+ sha256_init(&ctx);
+ sha256_update(&ctx, p, size);
+ sha256_done(&ctx, sha);
+}
+
+void sha256_u8(struct sha256_ctx *ctx, uint8_t v)
+{
+ sha256_update(ctx, &v, sizeof(v));
+}
+
+void sha256_u16(struct sha256_ctx *ctx, uint16_t v)
+{
+ sha256_update(ctx, &v, sizeof(v));
+}
+
+void sha256_u32(struct sha256_ctx *ctx, uint32_t v)
+{
+ sha256_update(ctx, &v, sizeof(v));
+}
+
+void sha256_u64(struct sha256_ctx *ctx, uint64_t v)
+{
+ sha256_update(ctx, &v, sizeof(v));
+}
+
+/* Add as little-endian */
+void sha256_le16(struct sha256_ctx *ctx, uint16_t v)
+{
+ leint16_t lev = cpu_to_le16(v);
+ sha256_update(ctx, &lev, sizeof(lev));
+}
+
+void sha256_le32(struct sha256_ctx *ctx, uint32_t v)
+{
+ leint32_t lev = cpu_to_le32(v);
+ sha256_update(ctx, &lev, sizeof(lev));
+}
+
+void sha256_le64(struct sha256_ctx *ctx, uint64_t v)
+{
+ leint64_t lev = cpu_to_le64(v);
+ sha256_update(ctx, &lev, sizeof(lev));
+}
+
+/* Add as big-endian */
+void sha256_be16(struct sha256_ctx *ctx, uint16_t v)
+{
+ beint16_t bev = cpu_to_be16(v);
+ sha256_update(ctx, &bev, sizeof(bev));
+}
+
+void sha256_be32(struct sha256_ctx *ctx, uint32_t v)
+{
+ beint32_t bev = cpu_to_be32(v);
+ sha256_update(ctx, &bev, sizeof(bev));
+}
+
+void sha256_be64(struct sha256_ctx *ctx, uint64_t v)
+{
+ beint64_t bev = cpu_to_be64(v);
+ sha256_update(ctx, &bev, sizeof(bev));
+}
+
+
diff --git a/ccan/ccan/crypto/sha256/sha256.h b/ccan/ccan/crypto/sha256/sha256.h
@@ -0,0 +1,155 @@
+
+#ifndef CCAN_CRYPTO_SHA256_H
+#define CCAN_CRYPTO_SHA256_H
+
+
+/** Output length for `wally_sha256` */
+#define SHA256_LEN 32
+
+
+/* BSD-MIT - see LICENSE file for details */
+/* #include "config.h" */
+#include <stdint.h>
+#include <stdlib.h>
+
+/* Uncomment this to use openssl's SHA256 routines (and link with -lcrypto) */
+/*#define CCAN_CRYPTO_SHA256_USE_OPENSSL 1*/
+
+#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
+#include <openssl/sha.h>
+#endif
+
+/**
+ * struct sha256 - structure representing a completed SHA256.
+ * @u.u8: an unsigned char array.
+ * @u.u32: a 32-bit integer array.
+ *
+ * Other fields may be added to the union in future.
+ */
+struct sha256 {
+ union {
+ uint32_t u32[8];
+ unsigned char u8[32];
+ } u;
+};
+
+/**
+ * sha256 - return sha256 of an object.
+ * @sha256: the sha256 to fill in
+ * @p: pointer to memory,
+ * @size: the number of bytes pointed to by @p
+ *
+ * The bytes pointed to by @p is SHA256 hashed into @sha256. This is
+ * equivalent to sha256_init(), sha256_update() then sha256_done().
+ */
+void sha256(struct sha256 *sha, const void *p, size_t size);
+
+/**
+ * struct sha256_ctx - structure to store running context for sha256
+ */
+struct sha256_ctx {
+#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
+ SHA256_CTX c;
+#else
+ uint32_t s[8];
+ union {
+ uint32_t u32[16];
+ unsigned char u8[64];
+ } buf;
+ size_t bytes;
+#endif
+};
+
+/**
+ * sha256_init - initialize an SHA256 context.
+ * @ctx: the sha256_ctx to initialize
+ *
+ * This must be called before sha256_update or sha256_done, or
+ * alternately you can assign SHA256_INIT.
+ *
+ * If it was already initialized, this forgets anything which was
+ * hashed before.
+ *
+ * Example:
+ * static void hash_all(const char **arr, struct sha256 *hash)
+ * {
+ * size_t i;
+ * struct sha256_ctx ctx;
+ *
+ * sha256_init(&ctx);
+ * for (i = 0; arr[i]; i++)
+ * sha256_update(&ctx, arr[i], strlen(arr[i]));
+ * sha256_done(&ctx, hash);
+ * }
+ */
+void sha256_init(struct sha256_ctx *ctx);
+
+/**
+ * SHA256_INIT - initializer for an SHA256 context.
+ *
+ * This can be used to statically initialize an SHA256 context (instead
+ * of sha256_init()).
+ *
+ * Example:
+ * static void hash_all(const char **arr, struct sha256 *hash)
+ * {
+ * size_t i;
+ * struct sha256_ctx ctx = SHA256_INIT;
+ *
+ * for (i = 0; arr[i]; i++)
+ * sha256_update(&ctx, arr[i], strlen(arr[i]));
+ * sha256_done(&ctx, hash);
+ * }
+ */
+#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
+#define SHA256_INIT \
+ { { { 0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul, \
+ 0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul }, \
+ 0x0, 0x0, \
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
+ 0x0, 0x20 } }
+#else
+#define SHA256_INIT \
+ { { 0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul, \
+ 0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul }, \
+ { { 0 } }, 0 }
+#endif
+
+/**
+ * sha256_update - include some memory in the hash.
+ * @ctx: the sha256_ctx to use
+ * @p: pointer to memory,
+ * @size: the number of bytes pointed to by @p
+ *
+ * You can call this multiple times to hash more data, before calling
+ * sha256_done().
+ */
+void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size);
+
+/**
+ * sha256_done - finish SHA256 and return the hash
+ * @ctx: the sha256_ctx to complete
+ * @res: the hash to return.
+ *
+ * Note that @ctx is *destroyed* by this, and must be reinitialized.
+ * To avoid that, pass a copy instead.
+ */
+void sha256_done(struct sha256_ctx *sha256, struct sha256 *res);
+
+/* Add various types to an SHA256 hash */
+void sha256_u8(struct sha256_ctx *ctx, uint8_t v);
+void sha256_u16(struct sha256_ctx *ctx, uint16_t v);
+void sha256_u32(struct sha256_ctx *ctx, uint32_t v);
+void sha256_u64(struct sha256_ctx *ctx, uint64_t v);
+
+/* Add as little-endian */
+void sha256_le16(struct sha256_ctx *ctx, uint16_t v);
+void sha256_le32(struct sha256_ctx *ctx, uint32_t v);
+void sha256_le64(struct sha256_ctx *ctx, uint64_t v);
+
+/* Add as big-endian */
+void sha256_be16(struct sha256_ctx *ctx, uint16_t v);
+void sha256_be32(struct sha256_ctx *ctx, uint32_t v);
+void sha256_be64(struct sha256_ctx *ctx, uint64_t v);
+
+#endif /* CCAN_CRYPTO_SHA256_H */
diff --git a/ccan/ccan/endian/endian.h b/ccan/ccan/endian/endian.h
@@ -0,0 +1,365 @@
+/* CC0 (Public domain) */
+#ifndef CCAN_ENDIAN_H
+#define CCAN_ENDIAN_H
+#include <stdint.h>
+
+#include "config.h"
+#include "cursor.h"
+
+/**
+ * BSWAP_16 - reverse bytes in a constant uint16_t value.
+ * @val: constant value whose bytes to swap.
+ *
+ * Designed to be usable in constant-requiring initializers.
+ *
+ * Example:
+ * struct mystruct {
+ * char buf[BSWAP_16(0x1234)];
+ * };
+ */
+#define BSWAP_16(val) \
+ ((((uint16_t)(val) & 0x00ff) << 8) \
+ | (((uint16_t)(val) & 0xff00) >> 8))
+
+/**
+ * BSWAP_32 - reverse bytes in a constant uint32_t value.
+ * @val: constant value whose bytes to swap.
+ *
+ * Designed to be usable in constant-requiring initializers.
+ *
+ * Example:
+ * struct mystruct {
+ * char buf[BSWAP_32(0xff000000)];
+ * };
+ */
+#define BSWAP_32(val) \
+ ((((uint32_t)(val) & 0x000000ff) << 24) \
+ | (((uint32_t)(val) & 0x0000ff00) << 8) \
+ | (((uint32_t)(val) & 0x00ff0000) >> 8) \
+ | (((uint32_t)(val) & 0xff000000) >> 24))
+
+/**
+ * BSWAP_64 - reverse bytes in a constant uint64_t value.
+ * @val: constantvalue whose bytes to swap.
+ *
+ * Designed to be usable in constant-requiring initializers.
+ *
+ * Example:
+ * struct mystruct {
+ * char buf[BSWAP_64(0xff00000000000000ULL)];
+ * };
+ */
+#define BSWAP_64(val) \
+ ((((uint64_t)(val) & 0x00000000000000ffULL) << 56) \
+ | (((uint64_t)(val) & 0x000000000000ff00ULL) << 40) \
+ | (((uint64_t)(val) & 0x0000000000ff0000ULL) << 24) \
+ | (((uint64_t)(val) & 0x00000000ff000000ULL) << 8) \
+ | (((uint64_t)(val) & 0x000000ff00000000ULL) >> 8) \
+ | (((uint64_t)(val) & 0x0000ff0000000000ULL) >> 24) \
+ | (((uint64_t)(val) & 0x00ff000000000000ULL) >> 40) \
+ | (((uint64_t)(val) & 0xff00000000000000ULL) >> 56))
+
+#if HAVE_BYTESWAP_H
+#include <byteswap.h>
+#else
+/**
+ * bswap_16 - reverse bytes in a uint16_t value.
+ * @val: value whose bytes to swap.
+ *
+ * Example:
+ * // Output contains "1024 is 4 as two bytes reversed"
+ * printf("1024 is %u as two bytes reversed\n", bswap_16(1024));
+ */
+static inline uint16_t bswap_16(uint16_t val)
+{
+ return BSWAP_16(val);
+}
+
+/**
+ * bswap_32 - reverse bytes in a uint32_t value.
+ * @val: value whose bytes to swap.
+ *
+ * Example:
+ * // Output contains "1024 is 262144 as four bytes reversed"
+ * printf("1024 is %u as four bytes reversed\n", bswap_32(1024));
+ */
+static inline uint32_t bswap_32(uint32_t val)
+{
+ return BSWAP_32(val);
+}
+#endif /* !HAVE_BYTESWAP_H */
+
+#if !HAVE_BSWAP_64
+/**
+ * bswap_64 - reverse bytes in a uint64_t value.
+ * @val: value whose bytes to swap.
+ *
+ * Example:
+ * // Output contains "1024 is 1125899906842624 as eight bytes reversed"
+ * printf("1024 is %llu as eight bytes reversed\n",
+ * (unsigned long long)bswap_64(1024));
+ */
+static inline uint64_t bswap_64(uint64_t val)
+{
+ return BSWAP_64(val);
+}
+#endif
+
+/* Needed for Glibc like endiness check */
+#define __LITTLE_ENDIAN 1234
+#define __BIG_ENDIAN 4321
+
+/* Sanity check the defines. We don't handle weird endianness. */
+#if !HAVE_LITTLE_ENDIAN && !HAVE_BIG_ENDIAN
+#error "Unknown endian"
+#elif HAVE_LITTLE_ENDIAN && HAVE_BIG_ENDIAN
+#error "Can't compile for both big and little endian."
+#elif HAVE_LITTLE_ENDIAN
+#ifndef __BYTE_ORDER
+#define __BYTE_ORDER __LITTLE_ENDIAN
+#elif __BYTE_ORDER != __LITTLE_ENDIAN
+#error "__BYTE_ORDER already defined, but not equal to __LITTLE_ENDIAN"
+#endif
+#elif HAVE_BIG_ENDIAN
+#ifndef __BYTE_ORDER
+#define __BYTE_ORDER __BIG_ENDIAN
+#elif __BYTE_ORDER != __BIG_ENDIAN
+#error "__BYTE_ORDER already defined, but not equal to __BIG_ENDIAN"
+#endif
+#endif
+
+
+#ifdef __CHECKER__
+/* sparse needs forcing to remove bitwise attribute from ccan/short_types */
+#define ENDIAN_CAST __attribute__((force))
+#define ENDIAN_TYPE __attribute__((bitwise))
+#else
+#define ENDIAN_CAST
+#define ENDIAN_TYPE
+#endif
+
+typedef uint64_t ENDIAN_TYPE leint64_t;
+typedef uint64_t ENDIAN_TYPE beint64_t;
+typedef uint32_t ENDIAN_TYPE leint32_t;
+typedef uint32_t ENDIAN_TYPE beint32_t;
+typedef uint16_t ENDIAN_TYPE leint16_t;
+typedef uint16_t ENDIAN_TYPE beint16_t;
+
+#if HAVE_LITTLE_ENDIAN
+/**
+ * CPU_TO_LE64 - convert a constant uint64_t value to little-endian
+ * @native: constant to convert
+ */
+#define CPU_TO_LE64(native) ((ENDIAN_CAST leint64_t)(native))
+
+/**
+ * CPU_TO_LE32 - convert a constant uint32_t value to little-endian
+ * @native: constant to convert
+ */
+#define CPU_TO_LE32(native) ((ENDIAN_CAST leint32_t)(native))
+
+/**
+ * CPU_TO_LE16 - convert a constant uint16_t value to little-endian
+ * @native: constant to convert
+ */
+#define CPU_TO_LE16(native) ((ENDIAN_CAST leint16_t)(native))
+
+/**
+ * LE64_TO_CPU - convert a little-endian uint64_t constant
+ * @le_val: little-endian constant to convert
+ */
+#define LE64_TO_CPU(le_val) ((ENDIAN_CAST uint64_t)(le_val))
+
+/**
+ * LE32_TO_CPU - convert a little-endian uint32_t constant
+ * @le_val: little-endian constant to convert
+ */
+#define LE32_TO_CPU(le_val) ((ENDIAN_CAST uint32_t)(le_val))
+
+/**
+ * LE16_TO_CPU - convert a little-endian uint16_t constant
+ * @le_val: little-endian constant to convert
+ */
+#define LE16_TO_CPU(le_val) ((ENDIAN_CAST uint16_t)(le_val))
+
+#else /* ... HAVE_BIG_ENDIAN */
+#define CPU_TO_LE64(native) ((ENDIAN_CAST leint64_t)BSWAP_64(native))
+#define CPU_TO_LE32(native) ((ENDIAN_CAST leint32_t)BSWAP_32(native))
+#define CPU_TO_LE16(native) ((ENDIAN_CAST leint16_t)BSWAP_16(native))
+#define LE64_TO_CPU(le_val) BSWAP_64((ENDIAN_CAST uint64_t)le_val)
+#define LE32_TO_CPU(le_val) BSWAP_32((ENDIAN_CAST uint32_t)le_val)
+#define LE16_TO_CPU(le_val) BSWAP_16((ENDIAN_CAST uint16_t)le_val)
+#endif /* HAVE_BIG_ENDIAN */
+
+#if HAVE_BIG_ENDIAN
+/**
+ * CPU_TO_BE64 - convert a constant uint64_t value to big-endian
+ * @native: constant to convert
+ */
+#define CPU_TO_BE64(native) ((ENDIAN_CAST beint64_t)(native))
+
+/**
+ * CPU_TO_BE32 - convert a constant uint32_t value to big-endian
+ * @native: constant to convert
+ */
+#define CPU_TO_BE32(native) ((ENDIAN_CAST beint32_t)(native))
+
+/**
+ * CPU_TO_BE16 - convert a constant uint16_t value to big-endian
+ * @native: constant to convert
+ */
+#define CPU_TO_BE16(native) ((ENDIAN_CAST beint16_t)(native))
+
+/**
+ * BE64_TO_CPU - convert a big-endian uint64_t constant
+ * @le_val: big-endian constant to convert
+ */
+#define BE64_TO_CPU(le_val) ((ENDIAN_CAST uint64_t)(le_val))
+
+/**
+ * BE32_TO_CPU - convert a big-endian uint32_t constant
+ * @le_val: big-endian constant to convert
+ */
+#define BE32_TO_CPU(le_val) ((ENDIAN_CAST uint32_t)(le_val))
+
+/**
+ * BE16_TO_CPU - convert a big-endian uint16_t constant
+ * @le_val: big-endian constant to convert
+ */
+#define BE16_TO_CPU(le_val) ((ENDIAN_CAST uint16_t)(le_val))
+
+#else /* ... HAVE_LITTLE_ENDIAN */
+#define CPU_TO_BE64(native) ((ENDIAN_CAST beint64_t)BSWAP_64(native))
+#define CPU_TO_BE32(native) ((ENDIAN_CAST beint32_t)BSWAP_32(native))
+#define CPU_TO_BE16(native) ((ENDIAN_CAST beint16_t)BSWAP_16(native))
+#define BE64_TO_CPU(le_val) BSWAP_64((ENDIAN_CAST uint64_t)le_val)
+#define BE32_TO_CPU(le_val) BSWAP_32((ENDIAN_CAST uint32_t)le_val)
+#define BE16_TO_CPU(le_val) BSWAP_16((ENDIAN_CAST uint16_t)le_val)
+#endif /* HAVE_LITTE_ENDIAN */
+
+
+/**
+ * cpu_to_le64 - convert a uint64_t value to little-endian
+ * @native: value to convert
+ */
+static inline leint64_t cpu_to_le64(uint64_t native)
+{
+ return CPU_TO_LE64(native);
+}
+
+/**
+ * cpu_to_le32 - convert a uint32_t value to little-endian
+ * @native: value to convert
+ */
+static inline leint32_t cpu_to_le32(uint32_t native)
+{
+ return CPU_TO_LE32(native);
+}
+
+/**
+ * cpu_to_le16 - convert a uint16_t value to little-endian
+ * @native: value to convert
+ */
+static inline leint16_t cpu_to_le16(uint16_t native)
+{
+ return CPU_TO_LE16(native);
+}
+
+/**
+ * le64_to_cpu - convert a little-endian uint64_t value
+ * @le_val: little-endian value to convert
+ */
+static inline uint64_t le64_to_cpu(leint64_t le_val)
+{
+ return LE64_TO_CPU(le_val);
+}
+
+/**
+ * le32_to_cpu - convert a little-endian uint32_t value
+ * @le_val: little-endian value to convert
+ */
+static inline uint32_t le32_to_cpu(leint32_t le_val)
+{
+ return LE32_TO_CPU(le_val);
+}
+
+/**
+ * le16_to_cpu - convert a little-endian uint16_t value
+ * @le_val: little-endian value to convert
+ */
+static inline uint16_t le16_to_cpu(leint16_t le_val)
+{
+ return LE16_TO_CPU(le_val);
+}
+
+/**
+ * cpu_to_be64 - convert a uint64_t value to big endian.
+ * @native: value to convert
+ */
+static inline beint64_t cpu_to_be64(uint64_t native)
+{
+ return CPU_TO_BE64(native);
+}
+
+/**
+ * cpu_to_be32 - convert a uint32_t value to big endian.
+ * @native: value to convert
+ */
+static inline beint32_t cpu_to_be32(uint32_t native)
+{
+ return CPU_TO_BE32(native);
+}
+
+/**
+ * cpu_to_be16 - convert a uint16_t value to big endian.
+ * @native: value to convert
+ */
+static inline beint16_t cpu_to_be16(uint16_t native)
+{
+ return CPU_TO_BE16(native);
+}
+
+/**
+ * be64_to_cpu - convert a big-endian uint64_t value
+ * @be_val: big-endian value to convert
+ */
+static inline uint64_t be64_to_cpu(beint64_t be_val)
+{
+ return BE64_TO_CPU(be_val);
+}
+
+/**
+ * be32_to_cpu - convert a big-endian uint32_t value
+ * @be_val: big-endian value to convert
+ */
+static inline uint32_t be32_to_cpu(beint32_t be_val)
+{
+ return BE32_TO_CPU(be_val);
+}
+
+/**
+ * be16_to_cpu - convert a big-endian uint16_t value
+ * @be_val: big-endian value to convert
+ */
+static inline uint16_t be16_to_cpu(beint16_t be_val)
+{
+ return BE16_TO_CPU(be_val);
+}
+
+/**
+ * be64/be32/be16 - 64/32/16 bit big-endian representation.
+ */
+typedef beint64_t be64;
+typedef beint32_t be32;
+typedef beint16_t be16;
+
+/**
+ * le64/le32/le16 - 64/32/16 bit little-endian representation.
+ */
+typedef leint64_t le64;
+typedef leint32_t le32;
+typedef leint16_t le16;
+
+
+#endif /* CCAN_ENDIAN_H */
+
diff --git a/ccan/ccan/likely/likely.h b/ccan/ccan/likely/likely.h
@@ -0,0 +1,115 @@
+/* CC0 (Public domain) - see LICENSE file for details */
+#ifndef CCAN_LIKELY_H
+#define CCAN_LIKELY_H
+#include "../config.h"
+#include <stdbool.h>
+
+#ifndef CCAN_LIKELY_DEBUG
+#if HAVE_BUILTIN_EXPECT
+/**
+ * likely - indicate that a condition is likely to be true.
+ * @cond: the condition
+ *
+ * This uses a compiler extension where available to indicate a likely
+ * code path and optimize appropriately; it's also useful for readers
+ * to quickly identify exceptional paths through functions. The
+ * threshold for "likely" is usually considered to be between 90 and
+ * 99%; marginal cases should not be marked either way.
+ *
+ * See Also:
+ * unlikely(), likely_stats()
+ *
+ * Example:
+ * // Returns false if we overflow.
+ * static inline bool inc_int(unsigned int *val)
+ * {
+ * (*val)++;
+ * if (likely(*val))
+ * return true;
+ * return false;
+ * }
+ */
+#define likely(cond) __builtin_expect(!!(cond), 1)
+
+/**
+ * unlikely - indicate that a condition is unlikely to be true.
+ * @cond: the condition
+ *
+ * This uses a compiler extension where available to indicate an unlikely
+ * code path and optimize appropriately; see likely() above.
+ *
+ * See Also:
+ * likely(), likely_stats(), COLD (compiler.h)
+ *
+ * Example:
+ * // Prints a warning if we overflow.
+ * static inline void inc_int(unsigned int *val)
+ * {
+ * (*val)++;
+ * if (unlikely(*val == 0))
+ * fprintf(stderr, "Overflow!");
+ * }
+ */
+#define unlikely(cond) __builtin_expect(!!(cond), 0)
+#else
+#ifndef likely
+#define likely(cond) (!!(cond))
+#endif
+#ifndef unlikely
+#define unlikely(cond) (!!(cond))
+#endif
+#endif
+#else /* CCAN_LIKELY_DEBUG versions */
+#include <ccan/str/str.h>
+
+#define likely(cond) \
+ (_likely_trace(!!(cond), 1, stringify(cond), __FILE__, __LINE__))
+#define unlikely(cond) \
+ (_likely_trace(!!(cond), 0, stringify(cond), __FILE__, __LINE__))
+
+long _likely_trace(bool cond, bool expect,
+ const char *condstr,
+ const char *file, unsigned int line);
+/**
+ * likely_stats - return description of abused likely()/unlikely()
+ * @min_hits: minimum number of hits
+ * @percent: maximum percentage correct
+ *
+ * When CCAN_LIKELY_DEBUG is defined, likely() and unlikely() trace their
+ * results: this causes a significant slowdown, but allows analysis of
+ * whether the branches are labelled correctly.
+ *
+ * This function returns a malloc'ed description of the least-correct
+ * usage of likely() or unlikely(). It ignores places which have been
+ * called less than @min_hits times, and those which were predicted
+ * correctly more than @percent of the time. It returns NULL when
+ * nothing meets those criteria.
+ *
+ * Note that this call is destructive; the returned offender is
+ * removed from the trace so that the next call to likely_stats() will
+ * return the next-worst likely()/unlikely() usage.
+ *
+ * Example:
+ * // Print every place hit more than twice which was wrong > 5%.
+ * static void report_stats(void)
+ * {
+ * #ifdef CCAN_LIKELY_DEBUG
+ * const char *bad;
+ *
+ * while ((bad = likely_stats(2, 95)) != NULL) {
+ * printf("Suspicious likely: %s", bad);
+ * free(bad);
+ * }
+ * #endif
+ * }
+ */
+char *likely_stats(unsigned int min_hits, unsigned int percent);
+
+/**
+ * likely_stats_reset - free up memory of likely()/unlikely() branches.
+ *
+ * This can also plug memory leaks.
+ */
+void likely_stats_reset(void);
+#endif /* CCAN_LIKELY_DEBUG */
+#endif /* CCAN_LIKELY_H */
diff --git a/ccan/ccan/list/list.c b/ccan/ccan/list/list.c
@@ -0,0 +1,43 @@
+/* Licensed under BSD-MIT - see LICENSE file for details */
+#include <stdio.h>
+#include <stdlib.h>
+#include "list.h"
+
+static void *corrupt(const char *abortstr,
+ const struct list_node *head,
+ const struct list_node *node,
+ unsigned int count)
+{
+ if (abortstr) {
+ fprintf(stderr,
+ "%s: prev corrupt in node %p (%u) of %p\n",
+ abortstr, node, count, head);
+ abort();
+ }
+ return NULL;
+}
+
+struct list_node *list_check_node(const struct list_node *node,
+ const char *abortstr)
+{
+ const struct list_node *p, *n;
+ int count = 0;
+
+ for (p = node, n = node->next; n != node; p = n, n = n->next) {
+ count++;
+ if (n->prev != p)
+ return corrupt(abortstr, node, n, count);
+ }
+ /* Check prev on head node. */
+ if (node->prev != p)
+ return corrupt(abortstr, node, node, 0);
+
+ return (struct list_node *)node;
+}
+
+struct list_head *list_check(const struct list_head *h, const char *abortstr)
+{
+ if (!list_check_node(&h->n, abortstr))
+ return NULL;
+ return (struct list_head *)h;
+}
diff --git a/ccan/ccan/list/list.h b/ccan/ccan/list/list.h
@@ -0,0 +1,842 @@
+/* Licensed under BSD-MIT - see LICENSE file for details */
+#ifndef CCAN_LIST_H
+#define CCAN_LIST_H
+//#define CCAN_LIST_DEBUG 1
+#include <stdbool.h>
+#include <assert.h>
+#include "str.h"
+#include "container_of.h"
+#include "check_type.h"
+
+/**
+ * struct list_node - an entry in a doubly-linked list
+ * @next: next entry (self if empty)
+ * @prev: previous entry (self if empty)
+ *
+ * This is used as an entry in a linked list.
+ * Example:
+ * struct child {
+ * const char *name;
+ * // Linked list of all us children.
+ * struct list_node list;
+ * };
+ */
+struct list_node
+{
+ struct list_node *next, *prev;
+};
+
+/**
+ * struct list_head - the head of a doubly-linked list
+ * @h: the list_head (containing next and prev pointers)
+ *
+ * This is used as the head of a linked list.
+ * Example:
+ * struct parent {
+ * const char *name;
+ * struct list_head children;
+ * unsigned int num_children;
+ * };
+ */
+struct list_head
+{
+ struct list_node n;
+};
+
+/**
+ * list_check - check head of a list for consistency
+ * @h: the list_head
+ * @abortstr: the location to print on aborting, or NULL.
+ *
+ * Because list_nodes have redundant information, consistency checking between
+ * the back and forward links can be done. This is useful as a debugging check.
+ * If @abortstr is non-NULL, that will be printed in a diagnostic if the list
+ * is inconsistent, and the function will abort.
+ *
+ * Returns the list head if the list is consistent, NULL if not (it
+ * can never return NULL if @abortstr is set).
+ *
+ * See also: list_check_node()
+ *
+ * Example:
+ * static void dump_parent(struct parent *p)
+ * {
+ * struct child *c;
+ *
+ * printf("%s (%u children):\n", p->name, p->num_children);
+ * list_check(&p->children, "bad child list");
+ * list_for_each(&p->children, c, list)
+ * printf(" -> %s\n", c->name);
+ * }
+ */
+struct list_head *list_check(const struct list_head *h, const char *abortstr);
+
+/**
+ * list_check_node - check node of a list for consistency
+ * @n: the list_node
+ * @abortstr: the location to print on aborting, or NULL.
+ *
+ * Check consistency of the list node is in (it must be in one).
+ *
+ * See also: list_check()
+ *
+ * Example:
+ * static void dump_child(const struct child *c)
+ * {
+ * list_check_node(&c->list, "bad child list");
+ * printf("%s\n", c->name);
+ * }
+ */
+struct list_node *list_check_node(const struct list_node *n,
+ const char *abortstr);
+
+#define LIST_LOC __FILE__ ":" stringify(__LINE__)
+#ifdef CCAN_LIST_DEBUG
+#define list_debug(h, loc) list_check((h), loc)
+#define list_debug_node(n, loc) list_check_node((n), loc)
+#else
+#define list_debug(h, loc) ((void)loc, h)
+#define list_debug_node(n, loc) ((void)loc, n)
+#endif
+
+/**
+ * LIST_HEAD_INIT - initializer for an empty list_head
+ * @name: the name of the list.
+ *
+ * Explicit initializer for an empty list.
+ *
+ * See also:
+ * LIST_HEAD, list_head_init()
+ *
+ * Example:
+ * static struct list_head my_list = LIST_HEAD_INIT(my_list);
+ */
+#define LIST_HEAD_INIT(name) { { &(name).n, &(name).n } }
+
+/**
+ * LIST_HEAD - define and initialize an empty list_head
+ * @name: the name of the list.
+ *
+ * The LIST_HEAD macro defines a list_head and initializes it to an empty
+ * list. It can be prepended by "static" to define a static list_head.
+ *
+ * See also:
+ * LIST_HEAD_INIT, list_head_init()
+ *
+ * Example:
+ * static LIST_HEAD(my_global_list);
+ */
+#define LIST_HEAD(name) \
+ struct list_head name = LIST_HEAD_INIT(name)
+
+/**
+ * list_head_init - initialize a list_head
+ * @h: the list_head to set to the empty list
+ *
+ * Example:
+ * ...
+ * struct parent *parent = malloc(sizeof(*parent));
+ *
+ * list_head_init(&parent->children);
+ * parent->num_children = 0;
+ */
+static inline void list_head_init(struct list_head *h)
+{
+ h->n.next = h->n.prev = &h->n;
+}
+
+/**
+ * list_node_init - initialize a list_node
+ * @n: the list_node to link to itself.
+ *
+ * You don't need to use this normally! But it lets you list_del(@n)
+ * safely.
+ */
+static inline void list_node_init(struct list_node *n)
+{
+ n->next = n->prev = n;
+}
+
+/**
+ * list_add_after - add an entry after an existing node in a linked list
+ * @h: the list_head to add the node to (for debugging)
+ * @p: the existing list_node to add the node after
+ * @n: the new list_node to add to the list.
+ *
+ * The existing list_node must already be a member of the list.
+ * The new list_node does not need to be initialized; it will be overwritten.
+ *
+ * Example:
+ * struct child c1, c2, c3;
+ * LIST_HEAD(h);
+ *
+ * list_add_tail(&h, &c1.list);
+ * list_add_tail(&h, &c3.list);
+ * list_add_after(&h, &c1.list, &c2.list);
+ */
+#define list_add_after(h, p, n) list_add_after_(h, p, n, LIST_LOC)
+static inline void list_add_after_(struct list_head *h,
+ struct list_node *p,
+ struct list_node *n,
+ const char *abortstr)
+{
+ n->next = p->next;
+ n->prev = p;
+ p->next->prev = n;
+ p->next = n;
+ (void)list_debug(h, abortstr);
+}
+
+/**
+ * list_add - add an entry at the start of a linked list.
+ * @h: the list_head to add the node to
+ * @n: the list_node to add to the list.
+ *
+ * The list_node does not need to be initialized; it will be overwritten.
+ * Example:
+ * struct child *child = malloc(sizeof(*child));
+ *
+ * child->name = "marvin";
+ * list_add(&parent->children, &child->list);
+ * parent->num_children++;
+ */
+#define list_add(h, n) list_add_(h, n, LIST_LOC)
+static inline void list_add_(struct list_head *h,
+ struct list_node *n,
+ const char *abortstr)
+{
+ list_add_after_(h, &h->n, n, abortstr);
+}
+
+/**
+ * list_add_before - add an entry before an existing node in a linked list
+ * @h: the list_head to add the node to (for debugging)
+ * @p: the existing list_node to add the node before
+ * @n: the new list_node to add to the list.
+ *
+ * The existing list_node must already be a member of the list.
+ * The new list_node does not need to be initialized; it will be overwritten.
+ *
+ * Example:
+ * list_head_init(&h);
+ * list_add_tail(&h, &c1.list);
+ * list_add_tail(&h, &c3.list);
+ * list_add_before(&h, &c3.list, &c2.list);
+ */
+#define list_add_before(h, p, n) list_add_before_(h, p, n, LIST_LOC)
+static inline void list_add_before_(struct list_head *h,
+ struct list_node *p,
+ struct list_node *n,
+ const char *abortstr)
+{
+ n->next = p;
+ n->prev = p->prev;
+ p->prev->next = n;
+ p->prev = n;
+ (void)list_debug(h, abortstr);
+}
+
+/**
+ * list_add_tail - add an entry at the end of a linked list.
+ * @h: the list_head to add the node to
+ * @n: the list_node to add to the list.
+ *
+ * The list_node does not need to be initialized; it will be overwritten.
+ * Example:
+ * list_add_tail(&parent->children, &child->list);
+ * parent->num_children++;
+ */
+#define list_add_tail(h, n) list_add_tail_(h, n, LIST_LOC)
+static inline void list_add_tail_(struct list_head *h,
+ struct list_node *n,
+ const char *abortstr)
+{
+ list_add_before_(h, &h->n, n, abortstr);
+}
+
+/**
+ * list_empty - is a list empty?
+ * @h: the list_head
+ *
+ * If the list is empty, returns true.
+ *
+ * Example:
+ * assert(list_empty(&parent->children) == (parent->num_children == 0));
+ */
+#define list_empty(h) list_empty_(h, LIST_LOC)
+static inline bool list_empty_(const struct list_head *h, const char* abortstr)
+{
+ (void)list_debug(h, abortstr);
+ return h->n.next == &h->n;
+}
+
+/**
+ * list_empty_nodebug - is a list empty (and don't perform debug checks)?
+ * @h: the list_head
+ *
+ * If the list is empty, returns true.
+ * This differs from list_empty() in that if CCAN_LIST_DEBUG is set it
+ * will NOT perform debug checks. Only use this function if you REALLY
+ * know what you're doing.
+ *
+ * Example:
+ * assert(list_empty_nodebug(&parent->children) == (parent->num_children == 0));
+ */
+#ifndef CCAN_LIST_DEBUG
+#define list_empty_nodebug(h) list_empty(h)
+#else
+static inline bool list_empty_nodebug(const struct list_head *h)
+{
+ return h->n.next == &h->n;
+}
+#endif
+
+/**
+ * list_empty_nocheck - is a list empty?
+ * @h: the list_head
+ *
+ * If the list is empty, returns true. This doesn't perform any
+ * debug check for list consistency, so it can be called without
+ * locks, racing with the list being modified. This is ok for
+ * checks where an incorrect result is not an issue (optimized
+ * bail out path for example).
+ */
+static inline bool list_empty_nocheck(const struct list_head *h)
+{
+ return h->n.next == &h->n;
+}
+
+/**
+ * list_del - delete an entry from an (unknown) linked list.
+ * @n: the list_node to delete from the list.
+ *
+ * Note that this leaves @n in an undefined state; it can be added to
+ * another list, but not deleted again.
+ *
+ * See also:
+ * list_del_from(), list_del_init()
+ *
+ * Example:
+ * list_del(&child->list);
+ * parent->num_children--;
+ */
+#define list_del(n) list_del_(n, LIST_LOC)
+static inline void list_del_(struct list_node *n, const char* abortstr)
+{
+ (void)list_debug_node(n, abortstr);
+ n->next->prev = n->prev;
+ n->prev->next = n->next;
+#ifdef CCAN_LIST_DEBUG
+ /* Catch use-after-del. */
+ n->next = n->prev = NULL;
+#endif
+}
+
+/**
+ * list_del_init - delete a node, and reset it so it can be deleted again.
+ * @n: the list_node to be deleted.
+ *
+ * list_del(@n) or list_del_init() again after this will be safe,
+ * which can be useful in some cases.
+ *
+ * See also:
+ * list_del_from(), list_del()
+ *
+ * Example:
+ * list_del_init(&child->list);
+ * parent->num_children--;
+ */
+#define list_del_init(n) list_del_init_(n, LIST_LOC)
+static inline void list_del_init_(struct list_node *n, const char *abortstr)
+{
+ list_del_(n, abortstr);
+ list_node_init(n);
+}
+
+/**
+ * list_del_from - delete an entry from a known linked list.
+ * @h: the list_head the node is in.
+ * @n: the list_node to delete from the list.
+ *
+ * This explicitly indicates which list a node is expected to be in,
+ * which is better documentation and can catch more bugs.
+ *
+ * See also: list_del()
+ *
+ * Example:
+ * list_del_from(&parent->children, &child->list);
+ * parent->num_children--;
+ */
+static inline void list_del_from(struct list_head *h, struct list_node *n)
+{
+#ifdef CCAN_LIST_DEBUG
+ {
+ /* Thorough check: make sure it was in list! */
+ struct list_node *i;
+ for (i = h->n.next; i != n; i = i->next)
+ assert(i != &h->n);
+ }
+#endif /* CCAN_LIST_DEBUG */
+
+ /* Quick test that catches a surprising number of bugs. */
+ assert(!list_empty(h));
+ list_del(n);
+}
+
+/**
+ * list_swap - swap out an entry from an (unknown) linked list for a new one.
+ * @o: the list_node to replace from the list.
+ * @n: the list_node to insert in place of the old one.
+ *
+ * Note that this leaves @o in an undefined state; it can be added to
+ * another list, but not deleted/swapped again.
+ *
+ * See also:
+ * list_del()
+ *
+ * Example:
+ * struct child x1, x2;
+ * LIST_HEAD(xh);
+ *
+ * list_add(&xh, &x1.list);
+ * list_swap(&x1.list, &x2.list);
+ */
+#define list_swap(o, n) list_swap_(o, n, LIST_LOC)
+static inline void list_swap_(struct list_node *o,
+ struct list_node *n,
+ const char* abortstr)
+{
+ (void)list_debug_node(o, abortstr);
+ *n = *o;
+ n->next->prev = n;
+ n->prev->next = n;
+#ifdef CCAN_LIST_DEBUG
+ /* Catch use-after-del. */
+ o->next = o->prev = NULL;
+#endif
+}
+
+/**
+ * list_entry - convert a list_node back into the structure containing it.
+ * @n: the list_node
+ * @type: the type of the entry
+ * @member: the list_node member of the type
+ *
+ * Example:
+ * // First list entry is children.next; convert back to child.
+ * child = list_entry(parent->children.n.next, struct child, list);
+ *
+ * See Also:
+ * list_top(), list_for_each()
+ */
+#define list_entry(n, type, member) container_of(n, type, member)
+
+/**
+ * list_top - get the first entry in a list
+ * @h: the list_head
+ * @type: the type of the entry
+ * @member: the list_node member of the type
+ *
+ * If the list is empty, returns NULL.
+ *
+ * Example:
+ * struct child *first;
+ * first = list_top(&parent->children, struct child, list);
+ * if (!first)
+ * printf("Empty list!\n");
+ */
+#define list_top(h, type, member) \
+ ((type *)list_top_((h), list_off_(type, member)))
+
+static inline const void *list_top_(const struct list_head *h, size_t off)
+{
+ if (list_empty(h))
+ return NULL;
+ return (const char *)h->n.next - off;
+}
+
+/**
+ * list_pop - remove the first entry in a list
+ * @h: the list_head
+ * @type: the type of the entry
+ * @member: the list_node member of the type
+ *
+ * If the list is empty, returns NULL.
+ *
+ * Example:
+ * struct child *one;
+ * one = list_pop(&parent->children, struct child, list);
+ * if (!one)
+ * printf("Empty list!\n");
+ */
+#define list_pop(h, type, member) \
+ ((type *)list_pop_((h), list_off_(type, member)))
+
+static inline const void *list_pop_(const struct list_head *h, size_t off)
+{
+ struct list_node *n;
+
+ if (list_empty(h))
+ return NULL;
+ n = h->n.next;
+ list_del(n);
+ return (const char *)n - off;
+}
+
+/**
+ * list_tail - get the last entry in a list
+ * @h: the list_head
+ * @type: the type of the entry
+ * @member: the list_node member of the type
+ *
+ * If the list is empty, returns NULL.
+ *
+ * Example:
+ * struct child *last;
+ * last = list_tail(&parent->children, struct child, list);
+ * if (!last)
+ * printf("Empty list!\n");
+ */
+#define list_tail(h, type, member) \
+ ((type *)list_tail_((h), list_off_(type, member)))
+
+static inline const void *list_tail_(const struct list_head *h, size_t off)
+{
+ if (list_empty(h))
+ return NULL;
+ return (const char *)h->n.prev - off;
+}
+
+/**
+ * list_for_each - iterate through a list.
+ * @h: the list_head (warning: evaluated multiple times!)
+ * @i: the structure containing the list_node
+ * @member: the list_node member of the structure
+ *
+ * This is a convenient wrapper to iterate @i over the entire list. It's
+ * a for loop, so you can break and continue as normal.
+ *
+ * Example:
+ * list_for_each(&parent->children, child, list)
+ * printf("Name: %s\n", child->name);
+ */
+#define list_for_each(h, i, member) \
+ list_for_each_off(h, i, list_off_var_(i, member))
+
+/**
+ * list_for_each_rev - iterate through a list backwards.
+ * @h: the list_head
+ * @i: the structure containing the list_node
+ * @member: the list_node member of the structure
+ *
+ * This is a convenient wrapper to iterate @i over the entire list. It's
+ * a for loop, so you can break and continue as normal.
+ *
+ * Example:
+ * list_for_each_rev(&parent->children, child, list)
+ * printf("Name: %s\n", child->name);
+ */
+#define list_for_each_rev(h, i, member) \
+ list_for_each_rev_off(h, i, list_off_var_(i, member))
+
+/**
+ * list_for_each_rev_safe - iterate through a list backwards,
+ * maybe during deletion
+ * @h: the list_head
+ * @i: the structure containing the list_node
+ * @nxt: the structure containing the list_node
+ * @member: the list_node member of the structure
+ *
+ * This is a convenient wrapper to iterate @i over the entire list backwards.
+ * It's a for loop, so you can break and continue as normal. The extra
+ * variable * @nxt is used to hold the next element, so you can delete @i
+ * from the list.
+ *
+ * Example:
+ * struct child *next;
+ * list_for_each_rev_safe(&parent->children, child, next, list) {
+ * printf("Name: %s\n", child->name);
+ * }
+ */
+#define list_for_each_rev_safe(h, i, nxt, member) \
+ list_for_each_rev_safe_off(h, i, nxt, list_off_var_(i, member))
+
+/**
+ * list_for_each_safe - iterate through a list, maybe during deletion
+ * @h: the list_head
+ * @i: the structure containing the list_node
+ * @nxt: the structure containing the list_node
+ * @member: the list_node member of the structure
+ *
+ * This is a convenient wrapper to iterate @i over the entire list. It's
+ * a for loop, so you can break and continue as normal. The extra variable
+ * @nxt is used to hold the next element, so you can delete @i from the list.
+ *
+ * Example:
+ * list_for_each_safe(&parent->children, child, next, list) {
+ * list_del(&child->list);
+ * parent->num_children--;
+ * }
+ */
+#define list_for_each_safe(h, i, nxt, member) \
+ list_for_each_safe_off(h, i, nxt, list_off_var_(i, member))
+
+/**
+ * list_next - get the next entry in a list
+ * @h: the list_head
+ * @i: a pointer to an entry in the list.
+ * @member: the list_node member of the structure
+ *
+ * If @i was the last entry in the list, returns NULL.
+ *
+ * Example:
+ * struct child *second;
+ * second = list_next(&parent->children, first, list);
+ * if (!second)
+ * printf("No second child!\n");
+ */
+#define list_next(h, i, member) \
+ ((list_typeof(i))list_entry_or_null(list_debug(h, \
+ __FILE__ ":" stringify(__LINE__)), \
+ (i)->member.next, \
+ list_off_var_((i), member)))
+
+/**
+ * list_prev - get the previous entry in a list
+ * @h: the list_head
+ * @i: a pointer to an entry in the list.
+ * @member: the list_node member of the structure
+ *
+ * If @i was the first entry in the list, returns NULL.
+ *
+ * Example:
+ * first = list_prev(&parent->children, second, list);
+ * if (!first)
+ * printf("Can't go back to first child?!\n");
+ */
+#define list_prev(h, i, member) \
+ ((list_typeof(i))list_entry_or_null(list_debug(h, \
+ __FILE__ ":" stringify(__LINE__)), \
+ (i)->member.prev, \
+ list_off_var_((i), member)))
+
+/**
+ * list_append_list - empty one list onto the end of another.
+ * @to: the list to append into
+ * @from: the list to empty.
+ *
+ * This takes the entire contents of @from and moves it to the end of
+ * @to. After this @from will be empty.
+ *
+ * Example:
+ * struct list_head adopter;
+ *
+ * list_append_list(&adopter, &parent->children);
+ * assert(list_empty(&parent->children));
+ * parent->num_children = 0;
+ */
+#define list_append_list(t, f) list_append_list_(t, f, \
+ __FILE__ ":" stringify(__LINE__))
+static inline void list_append_list_(struct list_head *to,
+ struct list_head *from,
+ const char *abortstr)
+{
+ struct list_node *from_tail = list_debug(from, abortstr)->n.prev;
+ struct list_node *to_tail = list_debug(to, abortstr)->n.prev;
+
+ /* Sew in head and entire list. */
+ to->n.prev = from_tail;
+ from_tail->next = &to->n;
+ to_tail->next = &from->n;
+ from->n.prev = to_tail;
+
+ /* Now remove head. */
+ list_del(&from->n);
+ list_head_init(from);
+}
+
+/**
+ * list_prepend_list - empty one list into the start of another.
+ * @to: the list to prepend into
+ * @from: the list to empty.
+ *
+ * This takes the entire contents of @from and moves it to the start
+ * of @to. After this @from will be empty.
+ *
+ * Example:
+ * list_prepend_list(&adopter, &parent->children);
+ * assert(list_empty(&parent->children));
+ * parent->num_children = 0;
+ */
+#define list_prepend_list(t, f) list_prepend_list_(t, f, LIST_LOC)
+static inline void list_prepend_list_(struct list_head *to,
+ struct list_head *from,
+ const char *abortstr)
+{
+ struct list_node *from_tail = list_debug(from, abortstr)->n.prev;
+ struct list_node *to_head = list_debug(to, abortstr)->n.next;
+
+ /* Sew in head and entire list. */
+ to->n.next = &from->n;
+ from->n.prev = &to->n;
+ to_head->prev = from_tail;
+ from_tail->next = to_head;
+
+ /* Now remove head. */
+ list_del(&from->n);
+ list_head_init(from);
+}
+
+/* internal macros, do not use directly */
+#define list_for_each_off_dir_(h, i, off, dir) \
+ for (i = list_node_to_off_(list_debug(h, LIST_LOC)->n.dir, \
+ (off)); \
+ list_node_from_off_((void *)i, (off)) != &(h)->n; \
+ i = list_node_to_off_(list_node_from_off_((void *)i, (off))->dir, \
+ (off)))
+
+#define list_for_each_safe_off_dir_(h, i, nxt, off, dir) \
+ for (i = list_node_to_off_(list_debug(h, LIST_LOC)->n.dir, \
+ (off)), \
+ nxt = list_node_to_off_(list_node_from_off_(i, (off))->dir, \
+ (off)); \
+ list_node_from_off_(i, (off)) != &(h)->n; \
+ i = nxt, \
+ nxt = list_node_to_off_(list_node_from_off_(i, (off))->dir, \
+ (off)))
+
+/**
+ * list_for_each_off - iterate through a list of memory regions.
+ * @h: the list_head
+ * @i: the pointer to a memory region which contains list node data.
+ * @off: offset(relative to @i) at which list node data resides.
+ *
+ * This is a low-level wrapper to iterate @i over the entire list, used to
+ * implement all oher, more high-level, for-each constructs. It's a for loop,
+ * so you can break and continue as normal.
+ *
+ * WARNING! Being the low-level macro that it is, this wrapper doesn't know
+ * nor care about the type of @i. The only assumption made is that @i points
+ * to a chunk of memory that at some @offset, relative to @i, contains a
+ * properly filled `struct list_node' which in turn contains pointers to
+ * memory chunks and it's turtles all the way down. With all that in mind
+ * remember that given the wrong pointer/offset couple this macro will
+ * happily churn all you memory until SEGFAULT stops it, in other words
+ * caveat emptor.
+ *
+ * It is worth mentioning that one of legitimate use-cases for that wrapper
+ * is operation on opaque types with known offset for `struct list_node'
+ * member(preferably 0), because it allows you not to disclose the type of
+ * @i.
+ *
+ * Example:
+ * list_for_each_off(&parent->children, child,
+ * offsetof(struct child, list))
+ * printf("Name: %s\n", child->name);
+ */
+#define list_for_each_off(h, i, off) \
+ list_for_each_off_dir_((h),(i),(off),next)
+
+/**
+ * list_for_each_rev_off - iterate through a list of memory regions backwards
+ * @h: the list_head
+ * @i: the pointer to a memory region which contains list node data.
+ * @off: offset(relative to @i) at which list node data resides.
+ *
+ * See list_for_each_off for details
+ */
+#define list_for_each_rev_off(h, i, off) \
+ list_for_each_off_dir_((h),(i),(off),prev)
+
+/**
+ * list_for_each_safe_off - iterate through a list of memory regions, maybe
+ * during deletion
+ * @h: the list_head
+ * @i: the pointer to a memory region which contains list node data.
+ * @nxt: the structure containing the list_node
+ * @off: offset(relative to @i) at which list node data resides.
+ *
+ * For details see `list_for_each_off' and `list_for_each_safe'
+ * descriptions.
+ *
+ * Example:
+ * list_for_each_safe_off(&parent->children, child,
+ * next, offsetof(struct child, list))
+ * printf("Name: %s\n", child->name);
+ */
+#define list_for_each_safe_off(h, i, nxt, off) \
+ list_for_each_safe_off_dir_((h),(i),(nxt),(off),next)
+
+/**
+ * list_for_each_rev_safe_off - iterate backwards through a list of
+ * memory regions, maybe during deletion
+ * @h: the list_head
+ * @i: the pointer to a memory region which contains list node data.
+ * @nxt: the structure containing the list_node
+ * @off: offset(relative to @i) at which list node data resides.
+ *
+ * For details see `list_for_each_rev_off' and `list_for_each_rev_safe'
+ * descriptions.
+ *
+ * Example:
+ * list_for_each_rev_safe_off(&parent->children, child,
+ * next, offsetof(struct child, list))
+ * printf("Name: %s\n", child->name);
+ */
+#define list_for_each_rev_safe_off(h, i, nxt, off) \
+ list_for_each_safe_off_dir_((h),(i),(nxt),(off),prev)
+
+/* Other -off variants. */
+#define list_entry_off(n, type, off) \
+ ((type *)list_node_from_off_((n), (off)))
+
+#define list_head_off(h, type, off) \
+ ((type *)list_head_off((h), (off)))
+
+#define list_tail_off(h, type, off) \
+ ((type *)list_tail_((h), (off)))
+
+#define list_add_off(h, n, off) \
+ list_add((h), list_node_from_off_((n), (off)))
+
+#define list_del_off(n, off) \
+ list_del(list_node_from_off_((n), (off)))
+
+#define list_del_from_off(h, n, off) \
+ list_del_from(h, list_node_from_off_((n), (off)))
+
+/* Offset helper functions so we only single-evaluate. */
+static inline void *list_node_to_off_(struct list_node *node, size_t off)
+{
+ return (void *)((char *)node - off);
+}
+static inline struct list_node *list_node_from_off_(void *ptr, size_t off)
+{
+ return (struct list_node *)((char *)ptr + off);
+}
+
+/* Get the offset of the member, but make sure it's a list_node. */
+#define list_off_(type, member) \
+ (container_off(type, member) + \
+ check_type(((type *)0)->member, struct list_node))
+
+#define list_off_var_(var, member) \
+ (container_off_var(var, member) + \
+ check_type(var->member, struct list_node))
+
+#if HAVE_TYPEOF
+#define list_typeof(var) typeof(var)
+#else
+#define list_typeof(var) void *
+#endif
+
+/* Returns member, or NULL if at end of list. */
+static inline void *list_entry_or_null(const struct list_head *h,
+ const struct list_node *n,
+ size_t off)
+{
+ if (n == &h->n)
+ return NULL;
+ return (char *)n - off;
+}
+#endif /* CCAN_LIST_H */
diff --git a/ccan/ccan/mem/mem.c b/ccan/ccan/mem/mem.c
@@ -0,0 +1,128 @@
+/* CC0 (Public domain) - see LICENSE file for details */
+
+#include "config.h"
+
+#include <assert.h>
+#include <string.h>
+#include "mem.h"
+
+#if !HAVE_MEMMEM
+void *memmem(const void *haystack, size_t haystacklen,
+ const void *needle, size_t needlelen)
+{
+ const char *p;
+
+ if (needlelen > haystacklen)
+ return NULL;
+
+ p = haystack;
+
+ for (p = haystack;
+ (p + needlelen) <= ((const char *)haystack + haystacklen);
+ p++)
+ if (memcmp(p, needle, needlelen) == 0)
+ return (void *)p;
+
+ return NULL;
+}
+#endif
+
+#if !HAVE_MEMRCHR
+void *memrchr(const void *s, int c, size_t n)
+{
+ unsigned char *p = (unsigned char *)s;
+
+ while (n) {
+ if (p[n-1] == c)
+ return p + n - 1;
+ n--;
+ }
+
+ return NULL;
+}
+#endif
+
+void *mempbrkm(const void *data_, size_t len, const void *accept_, size_t accept_len)
+{
+ const char *data = data_, *accept = accept_;
+ size_t i, j;
+
+ for (i = 0; i < len; i++)
+ for (j = 0; j < accept_len; j++)
+ if (accept[j] == data[i])
+ return (void *)&data[i];
+ return NULL;
+}
+
+void *memcchr(void const *data, int c, size_t data_len)
+{
+ char const *p = data;
+ size_t i;
+
+ for (i = 0; i < data_len; i++)
+ if (p[i] != c)
+ return (void *)&p[i];
+
+ return NULL;
+}
+
+#define MEMSWAP_TMP_SIZE 256
+
+void memswap(void *a, void *b, size_t n)
+{
+ char *ap = a;
+ char *bp = b;
+ char tmp[MEMSWAP_TMP_SIZE];
+
+ assert(!memoverlaps(a, n, b, n));
+
+ while (n) {
+ size_t m = n > MEMSWAP_TMP_SIZE ? MEMSWAP_TMP_SIZE : n;
+
+ memcpy(tmp, bp, m);
+ memcpy(bp, ap, m);
+ memcpy(ap, tmp, m);
+
+ ap += m;
+ bp += m;
+ n -= m;
+ }
+}
+
+bool memeqzero(const void *data, size_t length)
+{
+ const unsigned char *p = data;
+ size_t len;
+
+ /* Check first 16 bytes manually */
+ for (len = 0; len < 16; len++) {
+ if (!length)
+ return true;
+ if (*p)
+ return false;
+ p++;
+ length--;
+ }
+
+ /* Now we know that's zero, memcmp with self. */
+ return memcmp(data, p, length) == 0;
+}
+
+void memtaint(void *data, size_t len)
+{
+ /* Using 16 bytes is a bit quicker than 4 */
+ const unsigned tainter[]
+ = { 0xdeadbeef, 0xdeadbeef, 0xdeadbeef, 0xdeadbeef };
+ char *p = data;
+
+ while (len >= sizeof(tainter)) {
+ memcpy(p, tainter, sizeof(tainter));
+ p += sizeof(tainter);
+ len -= sizeof(tainter);
+ }
+ memcpy(p, tainter, len);
+
+#if HAVE_VALGRIND_MEMCHECK_H
+ VALGRIND_MAKE_MEM_UNDEFINED(data, len);
+#endif
+}
diff --git a/ccan/ccan/mem/mem.h b/ccan/ccan/mem/mem.h
@@ -0,0 +1,295 @@
+/* CC0 (Public domain) - see LICENSE file for details */
+#ifndef CCAN_MEM_H
+#define CCAN_MEM_H
+
+#include "../config.h"
+#include "../compiler.h"
+
+#include <string.h>
+#include <stdbool.h>
+
+#if !HAVE_MEMMEM
+PURE_FUNCTION
+void *memmem(const void *haystack, size_t haystacklen,
+ const void *needle, size_t needlelen);
+#endif
+
+#if !HAVE_MEMRCHR
+PURE_FUNCTION
+void *memrchr(const void *s, int c, size_t n);
+#endif
+
+/**
+ * mempbrkm - locates the first occurrence in @data of any bytes in @accept
+ * @data: where we search
+ * @len: length of data in bytes
+ * @accept: array of bytes we search for
+ * @accept_len: # of bytes in accept
+ *
+ * Returns a pointer to the byte in @data that matches one of the bytes in
+ * @accept, or NULL if no such byte is found.
+ *
+ * Example:
+ * char otherbytes[] = "Hello \0world";
+ * size_t otherbytes_len = sizeof(otherbytes) - 1;
+ * char *r = mempbrkm(otherbytes, otherbytes_len, "\0b", 2);
+ * if (r) {
+ * printf("Found %c\n", *r);
+ * } else {
+ * printf("Nada\n");
+ * }
+ *
+ */
+PURE_FUNCTION
+void *mempbrkm(const void *data, size_t len, const void *accept, size_t accept_len);
+
+/**
+ * mempbrk - locates the first occurrence in @data of any bytes in @accept
+ * @data: where we search
+ * @len: length of data in bytes
+ * @accept: NUL terminated string containing the bytes we search for
+ *
+ * Returns a pointer to the byte in @data that matches one of the bytes in
+ * @accept, or NULL if no such byte is found.
+ *
+ * Example:
+ *
+ * r = mempbrk(otherbytes, otherbytes_len, "abcde");
+ * if (r) {
+ * printf("Found %c\n", *r);
+ * } else {
+ * printf("Nada\n");
+ * }
+ */
+PURE_FUNCTION
+static inline char *mempbrk(const void *data, size_t len, const char *accept)
+{
+ return mempbrkm(data, len, accept, strlen(accept));
+}
+
+/**
+ * memcchr - scan memory until a character does _not_ match
+ * @data: pointer to memory to scan
+ * @data_len: length of data
+ * @c: character to scan for
+ *
+ * The complement of memchr().
+ *
+ * Returns a pointer to the first character which is _not_ @c. If all memory in
+ * @data is @c, returns NULL.
+ *
+ * Example:
+ * char somebytes[] = "HI By\0e";
+ * size_t bytes_len = sizeof(somebytes) - 1;
+ * r = memcchr(somebytes, ' ', bytes_len);
+ * if (r) {
+ * printf("Found %c after trimming spaces\n", *r);
+ * }
+ */
+PURE_FUNCTION
+void *memcchr(void const *data, int c, size_t data_len);
+
+/**
+ * memeq - Are two byte arrays equal?
+ * @a: first array
+ * @al: bytes in first array
+ * @b: second array
+ * @bl: bytes in second array
+ *
+ * Example:
+ * if (memeq(somebytes, bytes_len, otherbytes, otherbytes_len)) {
+ * printf("memory blocks are the same!\n");
+ * }
+ */
+PURE_FUNCTION
+static inline bool memeq(const void *a, size_t al, const void *b, size_t bl)
+{
+ return al == bl && !memcmp(a, b, bl);
+}
+
+/**
+ * memstarts - determine if @data starts with @prefix
+ * @data: does this begin with @prefix?
+ * @data_len: bytes in @data
+ * @prefix: does @data begin with these bytes?
+ * @prefix_len: bytes in @prefix
+ *
+ * Returns true if @data starts with @prefix, otherwise return false.
+ *
+ * Example:
+ * if (memstarts(somebytes, bytes_len, otherbytes, otherbytes_len)) {
+ * printf("somebytes starts with otherbytes!\n");
+ * }
+ */
+PURE_FUNCTION
+static inline bool memstarts(void const *data, size_t data_len,
+ void const *prefix, size_t prefix_len)
+{
+ if (prefix_len > data_len)
+ return false;
+ return memeq(data, prefix_len, prefix, prefix_len);
+}
+
+/**
+ * memeqstr - Is a byte array equal to a NUL terminated string?
+ * @data: byte array
+ * @length: length of @data in bytes
+ * @string: NUL terminated string
+ *
+ * The '\0' byte is ignored when checking if @bytes == @string.
+ *
+ * Example:
+ * if (memeqstr(somebytes, bytes_len, "foo")) {
+ * printf("somebytes == 'foo'!\n");
+ * }
+ */
+PURE_FUNCTION
+static inline bool memeqstr(const void *data, size_t length, const char *string)
+{
+ return memeq(data, length, string, strlen(string));
+}
+
+/**
+ * memeqzero - Is a byte array all zeroes?
+ * @data: byte array
+ * @length: length of @data in bytes
+ *
+ * Example:
+ * if (memeqzero(somebytes, bytes_len)) {
+ * printf("somebytes == 0!\n");
+ * }
+ */
+PURE_FUNCTION
+bool memeqzero(const void *data, size_t length);
+
+/**
+ * memstarts_str - Does this byte array start with a string prefix?
+ * @a: byte array
+ * @al: length in bytes
+ * @s: string prefix
+ *
+ * Example:
+ * if (memstarts_str(somebytes, bytes_len, "It")) {
+ * printf("somebytes starts with 'It'\n");
+ * }
+ */
+PURE_FUNCTION
+static inline bool memstarts_str(const void *a, size_t al, const char *s)
+{
+ return memstarts(a, al, s, strlen(s));
+}
+
+/**
+ * memends - Does this byte array end with a given byte-array suffix?
+ * @s: byte array
+ * @s_len: length in bytes
+ * @suffix: byte array suffix
+ * @suffix_len: length of suffix in bytes
+ *
+ * Returns true if @suffix appears as a substring at the end of @s,
+ * false otherwise.
+ */
+PURE_FUNCTION
+static inline bool memends(const void *s, size_t s_len, const void *suffix, size_t suffix_len)
+{
+ return (s_len >= suffix_len) && (memcmp((const char *)s + s_len - suffix_len,
+ suffix, suffix_len) == 0);
+}
+
+/**
+ * memends_str - Does this byte array end with a string suffix?
+ * @a: byte array
+ * @al: length in bytes
+ * @s: string suffix
+ *
+ * Example:
+ * if (memends_str(somebytes, bytes_len, "It")) {
+ * printf("somebytes ends with with 'It'\n");
+ * }
+ */
+PURE_FUNCTION
+static inline bool memends_str(const void *a, size_t al, const char *s)
+{
+ return memends(a, al, s, strlen(s));
+}
+
+/**
+ * memoverlaps - Do two memory ranges overlap?
+ * @a: pointer to first memory range
+ * @al: length of first memory range
+ * @b: pointer to second memory range
+ * @al: length of second memory range
+ */
+CONST_FUNCTION
+static inline bool memoverlaps(const void *a_, size_t al,
+ const void *b_, size_t bl)
+{
+ const char *a = a_;
+ const char *b = b_;
+
+ return (a < (b + bl)) && (b < (a + al));
+}
+
+/*
+ * memswap - Exchange two memory regions
+ * @a: first region
+ * @b: second region
+ * @n: length of the regions
+ *
+ * Undefined results if the two memory regions overlap.
+ */
+void memswap(void *a, void *b, size_t n);
+
+#if HAVE_VALGRIND_MEMCHECK_H
+#include <valgrind/memcheck.h>
+static inline void *memcheck_(const void *data, size_t len)
+{
+ VALGRIND_CHECK_MEM_IS_DEFINED(data, len);
+ return (void *)data;
+}
+#else
+static inline void *memcheck_(const void *data, size_t len)
+{
+ (void)len;
+ return (void *)data;
+}
+#endif
+
+#if HAVE_TYPEOF
+/**
+ * memcheck - check that a memory region is initialized
+ * @data: start of region
+ * @len: length in bytes
+ *
+ * When running under valgrind, this causes an error to be printed
+ * if the entire region is not defined. Otherwise valgrind only
+ * reports an error when an undefined value is used for a branch, or
+ * written out.
+ *
+ * Example:
+ * // Search for space, but make sure it's all initialized.
+ * if (memchr(memcheck(somebytes, bytes_len), ' ', bytes_len)) {
+ * printf("space was found!\n");
+ * }
+ */
+#define memcheck(data, len) ((__typeof__((data)+0))memcheck_((data), (len)))
+#else
+#define memcheck(data, len) memcheck_((data), (len))
+#endif
+
+/**
+ * memtaint - mark a memory region unused
+ * @data: start of region
+ * @len: length in bytes
+ *
+ * This writes an "0xdeadbeef" eyecatcher repeatedly to the memory.
+ * When running under valgrind, it also tells valgrind that the memory is
+ * uninitialized, triggering valgrind errors if it is used for branches
+ * or written out (or passed to memcheck!) in future.
+ *
+ * Example:
+ * // We'll reuse this buffer later, but be sure we don't access it.
+ * memtaint(somebytes, bytes_len);
+ */
+void memtaint(void *data, size_t len);
+#endif /* CCAN_MEM_H */
diff --git a/ccan/ccan/short_types/short_types.h b/ccan/ccan/short_types/short_types.h
@@ -0,0 +1,35 @@
+/* CC0 (Public domain) - see LICENSE file for details */
+#ifndef CCAN_SHORT_TYPES_H
+#define CCAN_SHORT_TYPES_H
+#include <stdint.h>
+
+/**
+ * u64/s64/u32/s32/u16/s16/u8/s8 - short names for explicitly-sized types.
+ */
+typedef uint64_t u64;
+typedef int64_t s64;
+typedef uint32_t u32;
+typedef int32_t s32;
+typedef uint16_t u16;
+typedef int16_t s16;
+typedef uint8_t u8;
+typedef int8_t s8;
+
+/* Whichever they include first, they get these definitions. */
+#ifdef CCAN_ENDIAN_H
+/**
+ * be64/be32/be16 - 64/32/16 bit big-endian representation.
+ */
+typedef beint64_t be64;
+typedef beint32_t be32;
+typedef beint16_t be16;
+
+/**
+ * le64/le32/le16 - 64/32/16 bit little-endian representation.
+ */
+typedef leint64_t le64;
+typedef leint32_t le32;
+typedef leint16_t le16;
+#endif
+
+#endif /* CCAN_SHORT_TYPES_H */
diff --git a/ccan/ccan/str/str.h b/ccan/ccan/str/str.h
@@ -0,0 +1,228 @@
+/* CC0 (Public domain) - see LICENSE file for details */
+#ifndef CCAN_STR_H
+#define CCAN_STR_H
+#include "../config.h"
+#include <string.h>
+#include <stdbool.h>
+#include <limits.h>
+#include <ctype.h>
+
+/**
+ * streq - Are two strings equal?
+ * @a: first string
+ * @b: first string
+ *
+ * This macro is arguably more readable than "!strcmp(a, b)".
+ *
+ * Example:
+ * if (streq(somestring, ""))
+ * printf("String is empty!\n");
+ */
+#define streq(a,b) (strcmp((a),(b)) == 0)
+
+/**
+ * strstarts - Does this string start with this prefix?
+ * @str: string to test
+ * @prefix: prefix to look for at start of str
+ *
+ * Example:
+ * if (strstarts(somestring, "foo"))
+ * printf("String %s begins with 'foo'!\n", somestring);
+ */
+#define strstarts(str,prefix) (strncmp((str),(prefix),strlen(prefix)) == 0)
+
+/**
+ * strends - Does this string end with this postfix?
+ * @str: string to test
+ * @postfix: postfix to look for at end of str
+ *
+ * Example:
+ * if (strends(somestring, "foo"))
+ * printf("String %s end with 'foo'!\n", somestring);
+ */
+static inline bool strends(const char *str, const char *postfix)
+{
+ if (strlen(str) < strlen(postfix))
+ return false;
+
+ return streq(str + strlen(str) - strlen(postfix), postfix);
+}
+
+/**
+ * stringify - Turn expression into a string literal
+ * @expr: any C expression
+ *
+ * Example:
+ * #define PRINT_COND_IF_FALSE(cond) \
+ * ((cond) || printf("%s is false!", stringify(cond)))
+ */
+#define stringify(expr) stringify_1(expr)
+/* Double-indirection required to stringify expansions */
+#define stringify_1(expr) #expr
+
+/**
+ * strcount - Count number of (non-overlapping) occurrences of a substring.
+ * @haystack: a C string
+ * @needle: a substring
+ *
+ * Example:
+ * assert(strcount("aaa aaa", "a") == 6);
+ * assert(strcount("aaa aaa", "ab") == 0);
+ * assert(strcount("aaa aaa", "aa") == 2);
+ */
+size_t strcount(const char *haystack, const char *needle);
+
+/**
+ * STR_MAX_CHARS - Maximum possible size of numeric string for this type.
+ * @type_or_expr: a pointer or integer type or expression.
+ *
+ * This provides enough space for a nul-terminated string which represents the
+ * largest possible value for the type or expression.
+ *
+ * Note: The implementation adds extra space so hex values or negative
+ * values will fit (eg. sprintf(... "%p"). )
+ *
+ * Example:
+ * char str[STR_MAX_CHARS(int)];
+ *
+ * sprintf(str, "%i", 7);
+ */
+#define STR_MAX_CHARS(type_or_expr) \
+ ((sizeof(type_or_expr) * CHAR_BIT + 8) / 9 * 3 + 2 \
+ + STR_MAX_CHARS_TCHECK_(type_or_expr))
+
+#if HAVE_TYPEOF
+/* Only a simple type can have 0 assigned, so test that. */
+#define STR_MAX_CHARS_TCHECK_(type_or_expr) \
+ (sizeof(({ typeof(type_or_expr) x = 0; x; }))*0)
+#else
+#define STR_MAX_CHARS_TCHECK_(type_or_expr) 0
+#endif
+
+/**
+ * cisalnum - isalnum() which takes a char (and doesn't accept EOF)
+ * @c: a character
+ *
+ * Surprisingly, the standard ctype.h isalnum() takes an int, which
+ * must have the value of EOF (-1) or an unsigned char. This variant
+ * takes a real char, and doesn't accept EOF.
+ */
+static inline bool cisalnum(char c)
+{
+ return isalnum((unsigned char)c);
+}
+static inline bool cisalpha(char c)
+{
+ return isalpha((unsigned char)c);
+}
+static inline bool cisascii(char c)
+{
+ return isascii((unsigned char)c);
+}
+#if HAVE_ISBLANK
+static inline bool cisblank(char c)
+{
+ return isblank((unsigned char)c);
+}
+#endif
+static inline bool ciscntrl(char c)
+{
+ return iscntrl((unsigned char)c);
+}
+static inline bool cisdigit(char c)
+{
+ return isdigit((unsigned char)c);
+}
+static inline bool cisgraph(char c)
+{
+ return isgraph((unsigned char)c);
+}
+static inline bool cislower(char c)
+{
+ return islower((unsigned char)c);
+}
+static inline bool cisprint(char c)
+{
+ return isprint((unsigned char)c);
+}
+static inline bool cispunct(char c)
+{
+ return ispunct((unsigned char)c);
+}
+static inline bool cisspace(char c)
+{
+ return isspace((unsigned char)c);
+}
+static inline bool cisupper(char c)
+{
+ return isupper((unsigned char)c);
+}
+static inline bool cisxdigit(char c)
+{
+ return isxdigit((unsigned char)c);
+}
+
+#include "str_debug.h"
+
+/* These checks force things out of line, hence they are under DEBUG. */
+#ifdef CCAN_STR_DEBUG
+#include <ccan/build_assert/build_assert.h>
+
+/* These are commonly misused: they take -1 or an *unsigned* char value. */
+#undef isalnum
+#undef isalpha
+#undef isascii
+#undef isblank
+#undef iscntrl
+#undef isdigit
+#undef isgraph
+#undef islower
+#undef isprint
+#undef ispunct
+#undef isspace
+#undef isupper
+#undef isxdigit
+
+/* You can use a char if char is unsigned. */
+#if HAVE_BUILTIN_TYPES_COMPATIBLE_P && HAVE_TYPEOF
+#define str_check_arg_(i) \
+ ((i) + BUILD_ASSERT_OR_ZERO(!__builtin_types_compatible_p(typeof(i), \
+ char) \
+ || (char)255 > 0))
+#else
+#define str_check_arg_(i) (i)
+#endif
+
+#define isalnum(i) str_isalnum(str_check_arg_(i))
+#define isalpha(i) str_isalpha(str_check_arg_(i))
+#define isascii(i) str_isascii(str_check_arg_(i))
+#if HAVE_ISBLANK
+#define isblank(i) str_isblank(str_check_arg_(i))
+#endif
+#define iscntrl(i) str_iscntrl(str_check_arg_(i))
+#define isdigit(i) str_isdigit(str_check_arg_(i))
+#define isgraph(i) str_isgraph(str_check_arg_(i))
+#define islower(i) str_islower(str_check_arg_(i))
+#define isprint(i) str_isprint(str_check_arg_(i))
+#define ispunct(i) str_ispunct(str_check_arg_(i))
+#define isspace(i) str_isspace(str_check_arg_(i))
+#define isupper(i) str_isupper(str_check_arg_(i))
+#define isxdigit(i) str_isxdigit(str_check_arg_(i))
+
+#if HAVE_TYPEOF
+/* With GNU magic, we can make const-respecting standard string functions. */
+#undef strstr
+#undef strchr
+#undef strrchr
+
+/* + 0 is needed to decay array into pointer. */
+#define strstr(haystack, needle) \
+ ((typeof((haystack) + 0))str_strstr((haystack), (needle)))
+#define strchr(haystack, c) \
+ ((typeof((haystack) + 0))str_strchr((haystack), (c)))
+#define strrchr(haystack, c) \
+ ((typeof((haystack) + 0))str_strrchr((haystack), (c)))
+#endif
+#endif /* CCAN_STR_DEBUG */
+
+#endif /* CCAN_STR_H */
diff --git a/ccan/ccan/structeq/structeq.h b/ccan/ccan/structeq/structeq.h
@@ -0,0 +1,46 @@
+/* MIT (BSD) license - see LICENSE file for details */
+#ifndef CCAN_STRUCTEQ_H
+#define CCAN_STRUCTEQ_H
+#include "build_assert.h"
+#include "cppmagic.h"
+#include <string.h>
+#include <stdbool.h>
+
+/**
+ * STRUCTEQ_DEF - define an ..._eq function to compare two structures.
+ * @sname: name of the structure, and function (<sname>_eq) to define.
+ * @padbytes: number of bytes of expected padding, or negative "max".
+ * @...: name of every member of the structure.
+ *
+ * This generates a single memcmp() call in the common case where the
+ * structure contains no padding. Since it can't tell the difference between
+ * padding and a missing member, @padbytes can be used to assert that
+ * there isn't any, or how many we expect. A negative number means
+ * "up to or equal to that amount of padding", as padding can be
+ * platform dependent.
+ */
+#define STRUCTEQ_DEF(sname, padbytes, ...) \
+static inline bool CPPMAGIC_GLUE2(sname, _eq)(const struct sname *_a, \
+ const struct sname *_b) \
+{ \
+ BUILD_ASSERT(((padbytes) < 0 && \
+ CPPMAGIC_JOIN(+, CPPMAGIC_MAP(STRUCTEQ_MEMBER_SIZE_, \
+ __VA_ARGS__)) \
+ - (padbytes) >= sizeof(*_a)) \
+ || CPPMAGIC_JOIN(+, CPPMAGIC_MAP(STRUCTEQ_MEMBER_SIZE_, \
+ __VA_ARGS__)) \
+ + (padbytes) == sizeof(*_a)); \
+ if (CPPMAGIC_JOIN(+, CPPMAGIC_MAP(STRUCTEQ_MEMBER_SIZE_, __VA_ARGS__)) \
+ == sizeof(*_a)) \
+ return memcmp(_a, _b, sizeof(*_a)) == 0; \
+ else \
+ return CPPMAGIC_JOIN(&&, \
+ CPPMAGIC_MAP(STRUCTEQ_MEMBER_CMP_, \
+ __VA_ARGS__)); \
+}
+
+/* Helpers */
+#define STRUCTEQ_MEMBER_SIZE_(m) sizeof((_a)->m)
+#define STRUCTEQ_MEMBER_CMP_(m) memcmp(&_a->m, &_b->m, sizeof(_a->m)) == 0
+
+#endif /* CCAN_STRUCTEQ_H */
diff --git a/ccan/ccan/take/take.c b/ccan/ccan/take/take.c
@@ -0,0 +1,126 @@
+/* CC0 (Public domain) - see LICENSE file for details */
+#include "take.h"
+#include "likely.h"
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+static const void **takenarr;
+static const char **labelarr;
+static size_t max_taken, num_taken;
+static size_t allocfail;
+static void (*allocfailfn)(const void *p);
+
+void *take_(const void *p, const char *label)
+{
+ /* Overallocate: it's better than risking calloc returning NULL! */
+ if (unlikely(label && !labelarr))
+ labelarr = calloc(max_taken+1, sizeof(*labelarr));
+
+ if (unlikely(num_taken == max_taken)) {
+ const void **new;
+
+ new = realloc(takenarr, sizeof(*takenarr) * (max_taken+1));
+ if (unlikely(!new)) {
+ if (allocfailfn) {
+ allocfail++;
+ allocfailfn(p);
+ return NULL;
+ }
+ /* Otherwise we leak p. */
+ return (void *)p;
+ }
+ takenarr = new;
+ /* Once labelarr is set, we maintain it. */
+ if (labelarr) {
+ const char **labelarr_new;
+ labelarr_new = realloc(labelarr,
+ sizeof(*labelarr) * (max_taken+1));
+ if (labelarr_new) {
+ labelarr = labelarr_new;
+ } else {
+ /* num_taken will be out of sync with the size of
+ * labelarr after realloc failure.
+ * Just pretend that we never had labelarr allocated. */
+ free(labelarr);
+ labelarr = NULL;
+ }
+ }
+ max_taken++;
+ }
+ if (unlikely(labelarr))
+ labelarr[num_taken] = label;
+ takenarr[num_taken++] = p;
+
+ return (void *)p;
+}
+
+static size_t find_taken(const void *p)
+{
+ size_t i;
+
+ for (i = 0; i < num_taken; i++) {
+ if (takenarr[i] == p)
+ return i+1;
+ }
+ return 0;
+}
+
+bool taken(const void *p)
+{
+ size_t i;
+
+ if (!p && unlikely(allocfail)) {
+ allocfail--;
+ return true;
+ }
+
+ i = find_taken(p);
+ if (!i)
+ return false;
+
+ memmove(&takenarr[i-1], &takenarr[i],
+ (--num_taken - (i - 1))*sizeof(takenarr[0]));
+ return true;
+}
+
+bool is_taken(const void *p)
+{
+ if (!p && unlikely(allocfail))
+ return true;
+
+ return find_taken(p) > 0;
+}
+
+const char *taken_any(void)
+{
+ static char pointer_buf[32];
+
+ if (num_taken == 0)
+ return NULL;
+
+ /* We're *allowed* to have some with labels, some without. */
+ if (labelarr) {
+ size_t i;
+ for (i = 0; i < num_taken; i++)
+ if (labelarr[i])
+ return labelarr[i];
+ }
+
+ sprintf(pointer_buf, "%p", takenarr[0]);
+ return pointer_buf;
+}
+
+void take_cleanup(void)
+{
+ max_taken = num_taken = 0;
+ free(takenarr);
+ takenarr = NULL;
+ free(labelarr);
+ labelarr = NULL;
+}
+
+void take_allocfail(void (*fn)(const void *p))
+{
+ allocfailfn = fn;
+}
diff --git a/ccan/ccan/take/take.h b/ccan/ccan/take/take.h
@@ -0,0 +1,136 @@
+/* CC0 (Public domain) - see LICENSE file for details */
+#ifndef CCAN_TAKE_H
+#define CCAN_TAKE_H
+#include "../config.h"
+#include <stdbool.h>
+#include "str.h"
+
+#ifdef CCAN_TAKE_DEBUG
+#define TAKE_LABEL(p) __FILE__ ":" stringify(__LINE__) ":" stringify(p)
+#else
+#define TAKE_LABEL(p) NULL
+#endif
+
+/**
+ * TAKES - annotate a formal parameter as being take()-able
+ *
+ * This doesn't do anything, but useful for documentation.
+ *
+ * Example:
+ * void print_string(const char *str TAKES);
+ *
+ */
+#define TAKES
+
+/**
+ * take - record a pointer to be consumed by the function its handed to.
+ * @p: the pointer to mark, or NULL.
+ *
+ * This marks a pointer object to be freed by the called function,
+ * which is extremely useful for chaining functions. It works on
+ * NULL, for pass-through error handling.
+ */
+#define take(p) (take_typeof(p) take_((p), TAKE_LABEL(p)))
+
+/**
+ * taken - check (and un-take) a pointer was passed with take()
+ * @p: the pointer to check.
+ *
+ * A function which accepts take() arguments uses this to see if it
+ * should own the pointer; it will be removed from the take list, so
+ * this only returns true once.
+ *
+ * Example:
+ * // Silly routine to add 1
+ * static int *add_one(const int *num TAKES)
+ * {
+ * int *ret;
+ * if (taken(num))
+ * ret = (int *)num;
+ * else
+ * ret = malloc(sizeof(int));
+ * if (ret)
+ * *ret = (*num) + 1;
+ * return ret;
+ * }
+ */
+bool taken(const void *p);
+
+/**
+ * is_taken - check if a pointer was passed with take()
+ * @p: the pointer to check.
+ *
+ * This is like the above, but doesn't remove it from the taken list.
+ *
+ * Example:
+ * // Silly routine to add 1: doesn't handle taken args!
+ * static int *add_one_notake(const int *num)
+ * {
+ * int *ret = malloc(sizeof(int));
+ * assert(!is_taken(num));
+ * if (ret)
+ * *ret = (*num) + 1;
+ * return ret;
+ * }
+ */
+bool is_taken(const void *p);
+
+/**
+ * taken_any - are there any taken pointers?
+ *
+ * Mainly useful for debugging take() leaks. With CCAN_TAKE_DEBUG, returns
+ * the label where the pointer was passed to take(), otherwise returns
+ * a static char buffer with the pointer value in it. NULL if none are taken.
+ *
+ * Example:
+ * static void cleanup(void)
+ * {
+ * assert(!taken_any());
+ * }
+ */
+const char *taken_any(void);
+
+/**
+ * take_cleanup - remove all taken pointers from list.
+ *
+ * This is useful in atexit() handlers for valgrind-style leak detection.
+ *
+ * Example:
+ * static void cleanup2(void)
+ * {
+ * take_cleanup();
+ * }
+ */
+void take_cleanup(void);
+
+/**
+ * take_allocfail - set function to call if we can't reallocated taken array.
+ * @fn: the function.
+ *
+ * If this is not set, then if the array reallocation fails, the
+ * pointer won't be marked taken(). If @fn returns, it is expected to
+ * free the pointer; we return NULL from take() and the function handles
+ * it like any allocation failure.
+ *
+ * Example:
+ * static void free_on_fail(const void *p)
+ * {
+ * free((void *)p);
+ * }
+ *
+ * static void init(void)
+ * {
+ * take_allocfail(free_on_fail);
+ * }
+ */
+void take_allocfail(void (*fn)(const void *p));
+
+/* Private functions */
+#if HAVE_TYPEOF
+#define take_typeof(ptr) (__typeof__(ptr))
+#else
+#define take_typeof(ptr)
+#endif
+
+void *take_(const void *p, const char *label);
+#endif /* CCAN_TAKE_H */
diff --git a/ccan/ccan/tal/str/str.c b/ccan/ccan/tal/str/str.c
@@ -0,0 +1,315 @@
+/* Licensed under BSD-MIT - see LICENSE file for details */
+#include <unistd.h>
+#include <stdint.h>
+#include <string.h>
+#include <limits.h>
+#include <stdlib.h>
+#include "talstr.h"
+#include <sys/types.h>
+#include <regex.h>
+#include <stdarg.h>
+#include <unistd.h>
+#include <stdio.h>
+#include "str.h"
+
+char *tal_strdup_(const tal_t *ctx, const char *p, const char *label)
+{
+ /* We have to let through NULL for take(). */
+ return tal_dup_arr_label(ctx, char, p, p ? strlen(p) + 1: 1, 0, label);
+}
+
+char *tal_strndup_(const tal_t *ctx, const char *p, size_t n, const char *label)
+{
+ size_t len;
+ char *ret;
+
+ /* We have to let through NULL for take(). */
+ if (likely(p))
+ len = strnlen(p, n);
+ else
+ len = n;
+
+ ret = tal_dup_arr_label(ctx, char, p, len, 1, label);
+ if (ret)
+ ret[len] = '\0';
+ return ret;
+}
+
+char *tal_fmt_(const tal_t *ctx, const char *label, const char *fmt, ...)
+{
+ va_list ap;
+ char *ret;
+
+ va_start(ap, fmt);
+ ret = tal_vfmt_(ctx, fmt, ap, label);
+ va_end(ap);
+
+ return ret;
+}
+
+static bool do_vfmt(char **buf, size_t off, const char *fmt, va_list ap)
+{
+ /* A decent guess to start. */
+ size_t max = strlen(fmt) * 2 + 1;
+ bool ok;
+
+ for (;;) {
+ va_list ap2;
+ int ret;
+
+ if (!tal_resize(buf, off + max)) {
+ ok = false;
+ break;
+ }
+
+ va_copy(ap2, ap);
+ ret = vsnprintf(*buf + off, max, fmt, ap2);
+ va_end(ap2);
+
+ if (ret < max) {
+ ok = true;
+ /* Make sure tal_count() is correct! */
+ tal_resize(buf, off + ret + 1);
+ break;
+ }
+ max *= 2;
+ }
+
+ if (taken(fmt))
+ tal_free(fmt);
+ return ok;
+}
+
+char *tal_vfmt_(const tal_t *ctx, const char *fmt, va_list ap, const char *label)
+{
+ char *buf;
+
+ if (!fmt && taken(fmt))
+ return NULL;
+
+ /* A decent guess to start. */
+ buf = tal_arr_label(ctx, char, strlen(fmt) * 2, label);
+ if (!do_vfmt(&buf, 0, fmt, ap))
+ buf = tal_free(buf);
+ return buf;
+}
+
+bool tal_append_vfmt(char **baseptr, const char *fmt, va_list ap)
+{
+ if (!fmt && taken(fmt))
+ return false;
+
+ return do_vfmt(baseptr, strlen(*baseptr), fmt, ap);
+}
+
+bool tal_append_fmt(char **baseptr, const char *fmt, ...)
+{
+ va_list ap;
+ bool ret;
+
+ va_start(ap, fmt);
+ ret = tal_append_vfmt(baseptr, fmt, ap);
+ va_end(ap);
+
+ return ret;
+}
+
+char *tal_strcat_(const tal_t *ctx, const char *s1, const char *s2,
+ const char *label)
+{
+ size_t len1, len2;
+ char *ret;
+
+ if (unlikely(!s2) && taken(s2)) {
+ if (taken(s1))
+ tal_free(s1);
+ return NULL;
+ }
+ /* We have to let through NULL for take(). */
+ len1 = s1 ? strlen(s1) : 0;
+ len2 = strlen(s2);
+
+ ret = tal_dup_arr_label(ctx, char, s1, len1, len2 + 1, label);
+ if (likely(ret))
+ memcpy(ret + len1, s2, len2 + 1);
+
+ if (taken(s2))
+ tal_free(s2);
+ return ret;
+}
+
+char **tal_strsplit_(const tal_t *ctx,
+ const char *string, const char *delims, enum strsplit flags,
+ const char *label)
+{
+ char **parts, *str;
+ size_t max = 64, num = 0;
+
+ parts = tal_arr(ctx, char *, max + 1);
+ if (unlikely(!parts)) {
+ if (taken(string))
+ tal_free(string);
+ if (taken(delims))
+ tal_free(delims);
+ return NULL;
+ }
+ str = tal_strdup(parts, string);
+ if (unlikely(!str))
+ goto fail;
+ if (unlikely(!delims) && is_taken(delims))
+ goto fail;
+
+ if (flags == STR_NO_EMPTY)
+ str += strspn(str, delims);
+
+ while (*str != '\0') {
+ size_t len = strcspn(str, delims), dlen;
+
+ parts[num] = str;
+ dlen = strspn(str + len, delims);
+ parts[num][len] = '\0';
+ if (flags == STR_EMPTY_OK && dlen)
+ dlen = 1;
+ str += len + dlen;
+ if (++num == max && !tal_resize(&parts, max*=2 + 1))
+ goto fail;
+ }
+ parts[num] = NULL;
+
+ /* Ensure that tal_count() is correct. */
+ if (unlikely(!tal_resize(&parts, num+1)))
+ goto fail;
+
+ if (taken(delims))
+ tal_free(delims);
+ return parts;
+
+fail:
+ tal_free(parts);
+ if (taken(delims))
+ tal_free(delims);
+ return NULL;
+}
+
+char *tal_strjoin_(const tal_t *ctx,
+ char *strings[], const char *delim, enum strjoin flags,
+ const char *label)
+{
+ unsigned int i;
+ char *ret = NULL;
+ size_t totlen = 0, dlen;
+
+ if (unlikely(!strings) && is_taken(strings))
+ goto fail;
+
+ if (unlikely(!delim) && is_taken(delim))
+ goto fail;
+
+ dlen = strlen(delim);
+ ret = tal_arr_label(ctx, char, dlen*2+1, label);
+ if (!ret)
+ goto fail;
+
+ ret[0] = '\0';
+ for (i = 0; strings[i]; i++) {
+ size_t len = strlen(strings[i]);
+
+ if (flags == STR_NO_TRAIL && !strings[i+1])
+ dlen = 0;
+ if (!tal_resize(&ret, totlen + len + dlen + 1))
+ goto fail;
+ memcpy(ret + totlen, strings[i], len);
+ totlen += len;
+ memcpy(ret + totlen, delim, dlen);
+ totlen += dlen;
+ }
+ ret[totlen] = '\0';
+ /* Make sure tal_count() is correct! */
+ tal_resize(&ret, totlen+1);
+out:
+ if (taken(strings))
+ tal_free(strings);
+ if (taken(delim))
+ tal_free(delim);
+ return ret;
+fail:
+ ret = tal_free(ret);
+ goto out;
+}
+
+static size_t count_open_braces(const char *string)
+{
+#if 1
+ size_t num = 0, esc = 0;
+
+ while (*string) {
+ if (*string == '\\')
+ esc++;
+ else {
+ /* An odd number of \ means it's escaped. */
+ if (*string == '(' && (esc & 1) == 0)
+ num++;
+ esc = 0;
+ }
+ string++;
+ }
+ return num;
+#else
+ return strcount(string, "(");
+#endif
+}
+
+bool tal_strreg_(const tal_t *ctx, const char *string, const char *label,
+ const char *regex, ...)
+{
+ size_t nmatch = 1 + count_open_braces(regex);
+ regmatch_t matches[nmatch];
+ regex_t r;
+ bool ret = false;
+ unsigned int i;
+ va_list ap;
+
+ if (unlikely(!regex) && is_taken(regex))
+ goto fail_no_re;
+
+ if (regcomp(&r, regex, REG_EXTENDED) != 0)
+ goto fail_no_re;
+
+ if (unlikely(!string) && is_taken(string))
+ goto fail;
+
+ if (regexec(&r, string, nmatch, matches, 0) != 0)
+ goto fail;
+
+ ret = true;
+ va_start(ap, regex);
+ for (i = 1; i < nmatch; i++) {
+ char **arg = va_arg(ap, char **);
+ if (arg) {
+ /* eg. ([a-z])? can give "no match". */
+ if (matches[i].rm_so == -1)
+ *arg = NULL;
+ else {
+ *arg = tal_strndup_(ctx,
+ string + matches[i].rm_so,
+ matches[i].rm_eo
+ - matches[i].rm_so,
+ label);
+ /* FIXME: If we fail, we set some and leak! */
+ if (!*arg) {
+ ret = false;
+ break;
+ }
+ }
+ }
+ }
+ va_end(ap);
+fail:
+ regfree(&r);
+fail_no_re:
+ if (taken(regex))
+ tal_free(regex);
+ if (taken(string))
+ tal_free(string);
+ return ret;
+}
diff --git a/ccan/ccan/tal/str/str.h b/ccan/ccan/tal/str/str.h
@@ -0,0 +1,225 @@
+/* Licensed under BSD-MIT - see LICENSE file for details */
+#ifndef CCAN_STR_TAL_H
+#define CCAN_STR_TAL_H
+#ifdef TAL_USE_TALLOC
+#include <ccan/tal/talloc/talloc.h>
+#else
+#include "tal.h"
+#endif
+#include <string.h>
+#include <stdbool.h>
+
+/**
+ * tal_strdup - duplicate a string
+ * @ctx: NULL, or tal allocated object to be parent.
+ * @p: the string to copy (can be take()).
+ *
+ * The returned string will have tal_count() == strlen() + 1.
+ */
+#define tal_strdup(ctx, p) tal_strdup_(ctx, p, TAL_LABEL(char, "[]"))
+char *tal_strdup_(const tal_t *ctx, const char *p TAKES, const char *label);
+
+/**
+ * tal_strndup - duplicate a limited amount of a string.
+ * @ctx: NULL, or tal allocated object to be parent.
+ * @p: the string to copy (can be take()).
+ * @n: the maximum length to copy.
+ *
+ * Always gives a nul-terminated string, with strlen() <= @n.
+ * The returned string will have tal_count() == strlen() + 1.
+ */
+#define tal_strndup(ctx, p, n) tal_strndup_(ctx, p, n, TAL_LABEL(char, "[]"))
+char *tal_strndup_(const tal_t *ctx, const char *p TAKES, size_t n,
+ const char *label);
+
+/**
+ * tal_fmt - allocate a formatted string
+ * @ctx: NULL, or tal allocated object to be parent.
+ * @fmt: the printf-style format (can be take()).
+ *
+ * The returned string will have tal_count() == strlen() + 1.
+ */
+#define tal_fmt(ctx, ...) \
+ tal_fmt_(ctx, TAL_LABEL(char, "[]"), __VA_ARGS__)
+char *tal_fmt_(const tal_t *ctx, const char *label, const char *fmt TAKES,
+ ...) PRINTF_FMT(3,4);
+
+/**
+ * tal_vfmt - allocate a formatted string (va_list version)
+ * @ctx: NULL, or tal allocated object to be parent.
+ * @fmt: the printf-style format (can be take()).
+ * @va: the va_list containing the format args.
+ *
+ * The returned string will have tal_count() == strlen() + 1.
+ */
+#define tal_vfmt(ctx, fmt, va) \
+ tal_vfmt_(ctx, fmt, va, TAL_LABEL(char, "[]"))
+char *tal_vfmt_(const tal_t *ctx, const char *fmt TAKES, va_list ap,
+ const char *label)
+ PRINTF_FMT(2,0);
+
+/**
+ * tal_append_fmt - append a formatted string to a talloc string.
+ * @baseptr: a pointer to the tal string to be appended to.
+ * @fmt: the printf-style format (can be take()).
+ *
+ * Returns false on allocation failure.
+ * Otherwise tal_count(*@baseptr) == strlen(*@baseptr) + 1.
+ */
+bool tal_append_fmt(char **baseptr, const char *fmt TAKES, ...) PRINTF_FMT(2,3);
+
+/**
+ * tal_append_vfmt - append a formatted string to a talloc string (va_list)
+ * @baseptr: a pointer to the tal string to be appended to.
+ * @fmt: the printf-style format (can be take()).
+ * @va: the va_list containing the format args.
+ *
+ * Returns false on allocation failure.
+ * Otherwise tal_count(*@baseptr) == strlen(*@baseptr) + 1.
+ */
+bool tal_append_vfmt(char **baseptr, const char *fmt TAKES, va_list ap);
+
+/**
+ * tal_strcat - join two strings together
+ * @ctx: NULL, or tal allocated object to be parent.
+ * @s1: the first string (can be take()).
+ * @s2: the second string (can be take()).
+ *
+ * The returned string will have tal_count() == strlen() + 1.
+ */
+#define tal_strcat(ctx, s1, s2) tal_strcat_(ctx, s1, s2, TAL_LABEL(char, "[]"))
+char *tal_strcat_(const tal_t *ctx, const char *s1 TAKES, const char *s2 TAKES,
+ const char *label);
+
+enum strsplit {
+ STR_EMPTY_OK,
+ STR_NO_EMPTY
+};
+
+/**
+ * tal_strsplit - Split string into an array of substrings
+ * @ctx: the context to tal from (often NULL).
+ * @string: the string to split (can be take()).
+ * @delims: delimiters where lines should be split (can be take()).
+ * @flags: whether to include empty substrings.
+ *
+ * This function splits a single string into multiple strings.
+ *
+ * If @string is take(), the returned array will point into the
+ * mangled @string.
+ *
+ * Multiple delimiters result in empty substrings. By definition, no
+ * delimiters will appear in the substrings.
+ *
+ * The final char * in the array will be NULL, and tal_count() will
+ * return the number of elements plus 1 (for that NULL).
+ *
+ * Example:
+ * #include <ccan/tal/str/str.h>
+ * ...
+ * static unsigned int count_long_lines(const char *string)
+ * {
+ * char **lines;
+ * unsigned int i, long_lines = 0;
+ *
+ * // Can only fail on out-of-memory.
+ * lines = tal_strsplit(NULL, string, "\n", STR_NO_EMPTY);
+ * for (i = 0; lines[i] != NULL; i++)
+ * if (strlen(lines[i]) > 80)
+ * long_lines++;
+ * tal_free(lines);
+ * return long_lines;
+ * }
+ */
+#define tal_strsplit(ctx, string, delims, flag) \
+ tal_strsplit_(ctx, string, delims, flag, TAL_LABEL(char *, "[]"))
+char **tal_strsplit_(const tal_t *ctx,
+ const char *string TAKES,
+ const char *delims TAKES,
+ enum strsplit flag,
+ const char *label);
+
+enum strjoin {
+ STR_TRAIL,
+ STR_NO_TRAIL
+};
+
+/**
+ * tal_strjoin - Join an array of substrings into one long string
+ * @ctx: the context to tal from (often NULL).
+ * @strings: the NULL-terminated array of strings to join (can be take())
+ * @delim: the delimiter to insert between the strings (can be take())
+ * @flags: whether to add a delimieter to the end
+ *
+ * This function joins an array of strings into a single string. The
+ * return value is allocated using tal. Each string in @strings is
+ * followed by a copy of @delim.
+ *
+ * The returned string will have tal_count() == strlen() + 1.
+ *
+ * Example:
+ * // Append the string "--EOL" to each line.
+ * static char *append_to_all_lines(const char *string)
+ * {
+ * char **lines, *ret;
+ *
+ * lines = tal_strsplit(NULL, string, "\n", STR_EMPTY_OK);
+ * ret = tal_strjoin(NULL, lines, "-- EOL\n", STR_TRAIL);
+ * tal_free(lines);
+ * return ret;
+ * }
+ */
+#define tal_strjoin(ctx, strings, delim, flags) \
+ tal_strjoin_(ctx, strings, delim, flags, TAL_LABEL(char, "[]"))
+char *tal_strjoin_(const void *ctx,
+ char *strings[] TAKES,
+ const char *delim TAKES,
+ enum strjoin flags,
+ const char *label);
+
+/**
+ * tal_strreg - match/extract from a string via (extended) regular expressions.
+ * @ctx: the context to tal from (often NULL)
+ * @string: the string to try to match (can be take())
+ * @regex: the regular expression to match (can be take())
+ * ...: pointers to strings to allocate for subexpressions.
+ *
+ * Returns true if we matched, in which case any parenthesized
+ * expressions in @regex are allocated and placed in the char **
+ * arguments following @regex. NULL arguments mean the match is not
+ * saved. The order of the strings is the order
+ * of opening braces in the expression: in the case of repeated
+ * expressions (eg "([a-z])*") the last one is saved, in the case of
+ * non-existent matches (eg "([a-z]*)?") the pointer is set to NULL.
+ *
+ * Allocation failures or malformed regular expressions return false.
+ * The allocated strings will have tal_count() == strlen() + 1.
+ *
+ * See Also:
+ * regcomp(3), regex(3).
+ *
+ * Example:
+ * // Given "My name is Rusty" outputs "Hello Rusty!\n"
+ * // Given "my first name is Rusty Russell" outputs "Hello Rusty Russell!\n"
+ * // Given "My name isnt Rusty Russell" outputs "Hello there!\n"
+ * int main(int argc, char *argv[])
+ * {
+ * char *person, *input;
+ *
+ * (void)argc;
+ * // Join args and trim trailing space.
+ * input = tal_strjoin(NULL, argv+1, " ", STR_NO_TRAIL);
+ * if (tal_strreg(NULL, input,
+ * "[Mm]y (first )?name is ([A-Za-z ]+)",
+ * NULL, &person))
+ * printf("Hello %s!\n", person);
+ * else
+ * printf("Hello there!\n");
+ * return 0;
+ * }
+ */
+#define tal_strreg(ctx, string, ...) \
+ tal_strreg_(ctx, string, TAL_LABEL(char, "[]"), __VA_ARGS__)
+bool tal_strreg_(const void *ctx, const char *string TAKES,
+ const char *label, const char *regex, ...);
+#endif /* CCAN_STR_TAL_H */
diff --git a/ccan/ccan/tal/tal.c b/ccan/ccan/tal/tal.c
@@ -0,0 +1,972 @@
+/* Licensed under BSD-MIT - see LICENSE file for details */
+#include "tal.h"
+#include "../compiler.h"
+#include "list.h"
+#include "alignof.h"
+
+#include <assert.h>
+#include <stdio.h>
+#include <stddef.h>
+#include <string.h>
+#include <limits.h>
+#include <stdint.h>
+#include <errno.h>
+
+//#define TAL_DEBUG 1
+
+#define NOTIFY_IS_DESTRUCTOR 512
+#define NOTIFY_EXTRA_ARG 1024
+
+/* This makes our parent_child ptr stand out for to_tal_hdr checks */
+#define TAL_PTR_OBFUSTICATOR ((intptr_t)0x1984200820142016ULL)
+
+/* 32-bit type field, first byte 0 in either endianness. */
+enum prop_type {
+ CHILDREN = 0x00c1d500,
+ NAME = 0x00111100,
+ NOTIFIER = 0x00071f00,
+};
+
+struct tal_hdr {
+ struct list_node list;
+ struct prop_hdr *prop;
+ /* XOR with TAL_PTR_OBFUSTICATOR */
+ intptr_t parent_child;
+ size_t bytelen;
+};
+
+struct prop_hdr {
+ enum prop_type type;
+ struct prop_hdr *next;
+};
+
+struct children {
+ struct prop_hdr hdr; /* CHILDREN */
+ struct tal_hdr *parent;
+ struct list_head children; /* Head of siblings. */
+};
+
+struct name {
+ struct prop_hdr hdr; /* NAME */
+ char name[];
+};
+
+struct notifier {
+ struct prop_hdr hdr; /* NOTIFIER */
+ enum tal_notify_type types;
+ union notifier_cb {
+ void (*notifyfn)(tal_t *, enum tal_notify_type, void *);
+ void (*destroy)(tal_t *); /* If NOTIFY_IS_DESTRUCTOR set */
+ void (*destroy2)(tal_t *, void *); /* If NOTIFY_EXTRA_ARG */
+ } u;
+};
+
+/* Extra arg */
+struct notifier_extra_arg {
+ struct notifier n;
+ void *arg;
+};
+
+#define EXTRA_ARG(n) (((struct notifier_extra_arg *)(n))->arg)
+
+static struct {
+ struct tal_hdr hdr;
+ struct children c;
+} null_parent = { { { &null_parent.hdr.list, &null_parent.hdr.list },
+ &null_parent.c.hdr, TAL_PTR_OBFUSTICATOR, 0 },
+ { { CHILDREN, NULL },
+ &null_parent.hdr,
+ { { &null_parent.c.children.n,
+ &null_parent.c.children.n } }
+ }
+};
+
+
+static void *(*allocfn)(size_t size) = malloc;
+static void *(*resizefn)(void *, size_t size) = realloc;
+static void (*freefn)(void *) = free;
+static void (*errorfn)(const char *msg) = (void *)abort;
+/* Count on non-destrutor notifiers; often stays zero. */
+static size_t notifiers = 0;
+
+static inline void COLD call_error(const char *msg)
+{
+ errorfn(msg);
+}
+
+static bool get_destroying_bit(intptr_t parent_child)
+{
+ return parent_child & 1;
+}
+
+static void set_destroying_bit(intptr_t *parent_child)
+{
+ *parent_child |= 1;
+}
+
+static struct children *ignore_destroying_bit(intptr_t parent_child)
+{
+ return (void *)((parent_child ^ TAL_PTR_OBFUSTICATOR) & ~(intptr_t)1);
+}
+
+/* This means valgrind can see leaks. */
+void tal_cleanup(void)
+{
+ struct tal_hdr *i;
+
+ while ((i = list_top(&null_parent.c.children, struct tal_hdr, list))) {
+ list_del(&i->list);
+ memset(i, 0, sizeof(*i));
+ }
+
+ /* Cleanup any taken pointers. */
+ take_cleanup();
+}
+
+/* We carefully start all real properties with a zero byte. */
+static bool is_literal(const struct prop_hdr *prop)
+{
+ return ((char *)prop)[0] != 0;
+}
+
+#ifndef NDEBUG
+static const void *bounds_start, *bounds_end;
+
+static void update_bounds(const void *new, size_t size)
+{
+ if (unlikely(!bounds_start)) {
+ bounds_start = new;
+ bounds_end = (char *)new + size;
+ } else if (new < bounds_start)
+ bounds_start = new;
+ else if ((char *)new + size > (char *)bounds_end)
+ bounds_end = (char *)new + size;
+}
+
+static bool in_bounds(const void *p)
+{
+ return !p
+ || (p >= (void *)&null_parent && p <= (void *)(&null_parent + 1))
+ || (p >= bounds_start && p <= bounds_end);
+}
+#else
+static void update_bounds(const void *new, size_t size)
+{
+}
+
+static bool in_bounds(const void *p)
+{
+ return true;
+}
+#endif
+
+static void check_bounds(const void *p)
+{
+ if (!in_bounds(p))
+ call_error("Not a valid header");
+}
+
+static struct tal_hdr *to_tal_hdr(const void *ctx)
+{
+ struct tal_hdr *t;
+
+ t = (struct tal_hdr *)((char *)ctx - sizeof(struct tal_hdr));
+ check_bounds(t);
+ check_bounds(ignore_destroying_bit(t->parent_child));
+ check_bounds(t->list.next);
+ check_bounds(t->list.prev);
+ if (t->prop && !is_literal(t->prop))
+ check_bounds(t->prop);
+ return t;
+}
+
+static struct tal_hdr *to_tal_hdr_or_null(const void *ctx)
+{
+ if (!ctx)
+ return &null_parent.hdr;
+ return to_tal_hdr(ctx);
+}
+
+static void *from_tal_hdr(const struct tal_hdr *hdr)
+{
+ return (void *)(hdr + 1);
+}
+
+static void *from_tal_hdr_or_null(const struct tal_hdr *hdr)
+{
+ if (hdr == &null_parent.hdr)
+ return NULL;
+ return from_tal_hdr(hdr);
+}
+
+#ifdef TAL_DEBUG
+static struct tal_hdr *debug_tal(struct tal_hdr *tal)
+{
+ tal_check(from_tal_hdr_or_null(tal), "TAL_DEBUG ");
+ return tal;
+}
+#else
+static struct tal_hdr *debug_tal(struct tal_hdr *tal)
+{
+ return tal;
+}
+#endif
+
+static void notify(const struct tal_hdr *ctx,
+ enum tal_notify_type type, const void *info,
+ int saved_errno)
+{
+ const struct prop_hdr *p;
+
+ for (p = ctx->prop; p; p = p->next) {
+ struct notifier *n;
+
+ if (is_literal(p))
+ break;
+ if (p->type != NOTIFIER)
+ continue;
+ n = (struct notifier *)p;
+ if (n->types & type) {
+ errno = saved_errno;
+ if (n->types & NOTIFY_IS_DESTRUCTOR) {
+ /* Blatt this notifier in case it tries to
+ * tal_del_destructor() from inside */
+ union notifier_cb cb = n->u;
+ /* It's a union, so this NULLs destroy2 too! */
+ n->u.destroy = NULL;
+ if (n->types & NOTIFY_EXTRA_ARG)
+ cb.destroy2(from_tal_hdr(ctx),
+ EXTRA_ARG(n));
+ else
+ cb.destroy(from_tal_hdr(ctx));
+ } else
+ n->u.notifyfn(from_tal_hdr_or_null(ctx), type,
+ (void *)info);
+ }
+ }
+}
+
+static void *allocate(size_t size)
+{
+ void *ret = allocfn(size);
+ if (!ret)
+ call_error("allocation failed");
+ else
+ update_bounds(ret, size);
+ return ret;
+}
+
+static struct prop_hdr **find_property_ptr(const struct tal_hdr *t,
+ enum prop_type type)
+{
+ struct prop_hdr **p;
+
+ for (p = (struct prop_hdr **)&t->prop; *p; p = &(*p)->next) {
+ if (is_literal(*p)) {
+ if (type == NAME)
+ return p;
+ break;
+ }
+ if ((*p)->type == type)
+ return p;
+ }
+ return NULL;
+}
+
+static void *find_property(const struct tal_hdr *parent, enum prop_type type)
+{
+ struct prop_hdr **p = find_property_ptr(parent, type);
+
+ if (p)
+ return *p;
+ return NULL;
+}
+
+static void init_property(struct prop_hdr *hdr,
+ struct tal_hdr *parent,
+ enum prop_type type)
+{
+ hdr->type = type;
+ hdr->next = parent->prop;
+ parent->prop = hdr;
+}
+
+static struct notifier *add_notifier_property(struct tal_hdr *t,
+ enum tal_notify_type types,
+ void (*fn)(void *,
+ enum tal_notify_type,
+ void *),
+ void *extra_arg)
+{
+ struct notifier *prop;
+
+ if (types & NOTIFY_EXTRA_ARG)
+ prop = allocate(sizeof(struct notifier_extra_arg));
+ else
+ prop = allocate(sizeof(struct notifier));
+
+ if (prop) {
+ init_property(&prop->hdr, t, NOTIFIER);
+ prop->types = types;
+ prop->u.notifyfn = fn;
+ if (types & NOTIFY_EXTRA_ARG)
+ EXTRA_ARG(prop) = extra_arg;
+ }
+ return prop;
+}
+
+static enum tal_notify_type del_notifier_property(struct tal_hdr *t,
+ void (*fn)(tal_t *,
+ enum tal_notify_type,
+ void *),
+ bool match_extra_arg,
+ void *extra_arg)
+{
+ struct prop_hdr **p;
+
+ for (p = (struct prop_hdr **)&t->prop; *p; p = &(*p)->next) {
+ struct notifier *n;
+ enum tal_notify_type types;
+
+ if (is_literal(*p))
+ break;
+ if ((*p)->type != NOTIFIER)
+ continue;
+ n = (struct notifier *)*p;
+ if (n->u.notifyfn != fn)
+ continue;
+
+ types = n->types;
+ if ((types & NOTIFY_EXTRA_ARG)
+ && match_extra_arg
+ && extra_arg != EXTRA_ARG(n))
+ continue;
+
+ *p = (*p)->next;
+ freefn(n);
+ return types & ~(NOTIFY_IS_DESTRUCTOR|NOTIFY_EXTRA_ARG);
+ }
+ return 0;
+}
+
+static struct name *add_name_property(struct tal_hdr *t, const char *name)
+{
+ struct name *prop;
+
+ prop = allocate(sizeof(*prop) + strlen(name) + 1);
+ if (prop) {
+ init_property(&prop->hdr, t, NAME);
+ strcpy(prop->name, name);
+ }
+ return prop;
+}
+
+static struct children *add_child_property(struct tal_hdr *parent,
+ struct tal_hdr *child UNNEEDED)
+{
+ struct children *prop = allocate(sizeof(*prop));
+ if (prop) {
+ init_property(&prop->hdr, parent, CHILDREN);
+ prop->parent = parent;
+ list_head_init(&prop->children);
+ }
+ return prop;
+}
+
+static bool add_child(struct tal_hdr *parent, struct tal_hdr *child)
+{
+ struct children *children = find_property(parent, CHILDREN);
+
+ if (!children) {
+ children = add_child_property(parent, child);
+ if (!children)
+ return false;
+ }
+ list_add(&children->children, &child->list);
+ child->parent_child = (intptr_t)children ^ TAL_PTR_OBFUSTICATOR;
+ return true;
+}
+
+static void del_tree(struct tal_hdr *t, const tal_t *orig, int saved_errno)
+{
+ struct prop_hdr **prop, *p, *next;
+
+ assert(!taken(from_tal_hdr(t)));
+
+ /* Already being destroyed? Don't loop. */
+ if (unlikely(get_destroying_bit(t->parent_child)))
+ return;
+
+ set_destroying_bit(&t->parent_child);
+
+ /* Call free notifiers. */
+ notify(t, TAL_NOTIFY_FREE, (tal_t *)orig, saved_errno);
+
+ /* Now free children and groups. */
+ prop = find_property_ptr(t, CHILDREN);
+ if (prop) {
+ struct tal_hdr *i;
+ struct children *c = (struct children *)*prop;
+
+ while ((i = list_top(&c->children, struct tal_hdr, list))) {
+ list_del(&i->list);
+ del_tree(i, orig, saved_errno);
+ }
+ }
+
+ /* Finally free our properties. */
+ for (p = t->prop; p && !is_literal(p); p = next) {
+ next = p->next;
+ freefn(p);
+ }
+ freefn(t);
+}
+
+void *tal_alloc_(const tal_t *ctx, size_t size, bool clear, const char *label)
+{
+ struct tal_hdr *child, *parent = debug_tal(to_tal_hdr_or_null(ctx));
+
+ child = allocate(sizeof(struct tal_hdr) + size);
+ if (!child)
+ return NULL;
+ if (clear)
+ memset(from_tal_hdr(child), 0, size);
+ child->prop = (void *)label;
+ child->bytelen = size;
+
+ if (!add_child(parent, child)) {
+ freefn(child);
+ return NULL;
+ }
+ debug_tal(parent);
+ if (notifiers)
+ notify(parent, TAL_NOTIFY_ADD_CHILD, from_tal_hdr(child), 0);
+ return from_tal_hdr(debug_tal(child));
+}
+
+static bool adjust_size(size_t *size, size_t count)
+{
+ const size_t extra = sizeof(struct tal_hdr);
+
+ /* Multiplication wrap */
+ if (count && unlikely(*size * count / *size != count))
+ goto overflow;
+
+ *size *= count;
+
+ /* Make sure we don't wrap adding header. */
+ if (*size + extra < extra)
+ goto overflow;
+ return true;
+overflow:
+ call_error("allocation size overflow");
+ return false;
+}
+
+void *tal_alloc_arr_(const tal_t *ctx, size_t size, size_t count, bool clear,
+ const char *label)
+{
+ if (!adjust_size(&size, count))
+ return NULL;
+
+ return tal_alloc_(ctx, size, clear, label);
+}
+
+void *tal_free(const tal_t *ctx)
+{
+ if (ctx) {
+ struct tal_hdr *t;
+ int saved_errno = errno;
+ t = debug_tal(to_tal_hdr(ctx));
+ if (unlikely(get_destroying_bit(t->parent_child)))
+ return NULL;
+ if (notifiers)
+ notify(ignore_destroying_bit(t->parent_child)->parent,
+ TAL_NOTIFY_DEL_CHILD, ctx, saved_errno);
+ list_del(&t->list);
+ del_tree(t, ctx, saved_errno);
+ errno = saved_errno;
+ }
+ return NULL;
+}
+
+void *tal_steal_(const tal_t *new_parent, const tal_t *ctx)
+{
+ if (ctx) {
+ struct tal_hdr *newpar, *t, *old_parent;
+
+ newpar = debug_tal(to_tal_hdr_or_null(new_parent));
+ t = debug_tal(to_tal_hdr(ctx));
+
+ /* Unlink it from old parent. */
+ list_del(&t->list);
+ old_parent = ignore_destroying_bit(t->parent_child)->parent;
+
+ if (unlikely(!add_child(newpar, t))) {
+ /* We can always add to old parent, because it has a
+ * children property already. */
+ if (!add_child(old_parent, t))
+ abort();
+ return NULL;
+ }
+ debug_tal(newpar);
+ if (notifiers)
+ notify(t, TAL_NOTIFY_STEAL, new_parent, 0);
+ }
+ return (void *)ctx;
+}
+
+bool tal_add_destructor_(const tal_t *ctx, void (*destroy)(void *me))
+{
+ tal_t *t = debug_tal(to_tal_hdr(ctx));
+ return add_notifier_property(t, TAL_NOTIFY_FREE|NOTIFY_IS_DESTRUCTOR,
+ (void *)destroy, NULL);
+}
+
+bool tal_add_destructor2_(const tal_t *ctx, void (*destroy)(void *me, void *arg),
+ void *arg)
+{
+ tal_t *t = debug_tal(to_tal_hdr(ctx));
+ return add_notifier_property(t, TAL_NOTIFY_FREE|NOTIFY_IS_DESTRUCTOR
+ |NOTIFY_EXTRA_ARG,
+ (void *)destroy, arg);
+}
+
+/* We could support notifiers with an extra arg, but we didn't add to API */
+bool tal_add_notifier_(const tal_t *ctx, enum tal_notify_type types,
+ void (*callback)(tal_t *, enum tal_notify_type, void *))
+{
+ struct tal_hdr *t = debug_tal(to_tal_hdr_or_null(ctx));
+ struct notifier *n;
+
+ assert(types);
+ assert((types & ~(TAL_NOTIFY_FREE | TAL_NOTIFY_STEAL | TAL_NOTIFY_MOVE
+ | TAL_NOTIFY_RESIZE | TAL_NOTIFY_RENAME
+ | TAL_NOTIFY_ADD_CHILD | TAL_NOTIFY_DEL_CHILD
+ | TAL_NOTIFY_ADD_NOTIFIER
+ | TAL_NOTIFY_DEL_NOTIFIER)) == 0);
+
+ /* Don't call notifier about itself: set types after! */
+ n = add_notifier_property(t, 0, callback, NULL);
+ if (unlikely(!n))
+ return false;
+
+ if (notifiers)
+ notify(t, TAL_NOTIFY_ADD_NOTIFIER, callback, 0);
+
+ n->types = types;
+ if (types != TAL_NOTIFY_FREE)
+ notifiers++;
+ return true;
+}
+
+bool tal_del_notifier_(const tal_t *ctx,
+ void (*callback)(tal_t *, enum tal_notify_type, void *),
+ bool match_extra_arg, void *extra_arg)
+{
+ struct tal_hdr *t = debug_tal(to_tal_hdr_or_null(ctx));
+ enum tal_notify_type types;
+
+ types = del_notifier_property(t, callback, match_extra_arg, extra_arg);
+ if (types) {
+ notify(t, TAL_NOTIFY_DEL_NOTIFIER, callback, 0);
+ if (types != TAL_NOTIFY_FREE)
+ notifiers--;
+ return true;
+ }
+ return false;
+}
+
+bool tal_del_destructor_(const tal_t *ctx, void (*destroy)(void *me))
+{
+ return tal_del_notifier_(ctx, (void *)destroy, false, NULL);
+}
+
+bool tal_del_destructor2_(const tal_t *ctx, void (*destroy)(void *me, void *arg),
+ void *arg)
+{
+ return tal_del_notifier_(ctx, (void *)destroy, true, arg);
+}
+
+bool tal_set_name_(tal_t *ctx, const char *name, bool literal)
+{
+ struct tal_hdr *t = debug_tal(to_tal_hdr(ctx));
+ struct prop_hdr **prop = find_property_ptr(t, NAME);
+
+ /* Get rid of any old name */
+ if (prop) {
+ struct name *name = (struct name *)*prop;
+ if (is_literal(&name->hdr))
+ *prop = NULL;
+ else {
+ *prop = name->hdr.next;
+ freefn(name);
+ }
+ }
+
+ if (literal && name[0]) {
+ struct prop_hdr **p;
+
+ /* Append literal. */
+ for (p = &t->prop; *p && !is_literal(*p); p = &(*p)->next);
+ *p = (struct prop_hdr *)name;
+ } else if (!add_name_property(t, name))
+ return false;
+
+ debug_tal(t);
+ if (notifiers)
+ notify(t, TAL_NOTIFY_RENAME, name, 0);
+ return true;
+}
+
+const char *tal_name(const tal_t *t)
+{
+ struct name *n;
+
+ n = find_property(debug_tal(to_tal_hdr(t)), NAME);
+ if (!n)
+ return NULL;
+
+ if (is_literal(&n->hdr))
+ return (const char *)n;
+ return n->name;
+}
+
+size_t tal_bytelen(const tal_t *ptr)
+{
+ /* NULL -> null_parent which has bytelen 0 */
+ struct tal_hdr *t = debug_tal(to_tal_hdr_or_null(ptr));
+
+ return t->bytelen;
+}
+
+/* Start one past first child: make stopping natural in circ. list. */
+static struct tal_hdr *first_child(struct tal_hdr *parent)
+{
+ struct children *child;
+
+ child = find_property(parent, CHILDREN);
+ if (!child)
+ return NULL;
+
+ return list_top(&child->children, struct tal_hdr, list);
+}
+
+tal_t *tal_first(const tal_t *root)
+{
+ struct tal_hdr *c, *t = debug_tal(to_tal_hdr_or_null(root));
+
+ c = first_child(t);
+ if (!c)
+ return NULL;
+ return from_tal_hdr(c);
+}
+
+tal_t *tal_next(const tal_t *prev)
+{
+ struct tal_hdr *next, *prevhdr = debug_tal(to_tal_hdr(prev));
+ struct list_head *head;
+
+ head = &ignore_destroying_bit(prevhdr->parent_child)->children;
+ next = list_next(head, prevhdr, list);
+ if (!next)
+ return NULL;
+ return from_tal_hdr(next);
+}
+
+tal_t *tal_parent(const tal_t *ctx)
+{
+ struct tal_hdr *t;
+
+ if (!ctx)
+ return NULL;
+
+ t = debug_tal(to_tal_hdr(ctx));
+ if (ignore_destroying_bit(t->parent_child)->parent == &null_parent.hdr)
+ return NULL;
+ return from_tal_hdr(ignore_destroying_bit(t->parent_child)->parent);
+}
+
+bool tal_resize_(tal_t **ctxp, size_t size, size_t count, bool clear)
+{
+ struct tal_hdr *old_t, *t;
+ struct children *child;
+
+ old_t = debug_tal(to_tal_hdr(*ctxp));
+
+ if (!adjust_size(&size, count))
+ return false;
+
+ t = resizefn(old_t, sizeof(struct tal_hdr) + size);
+ if (!t) {
+ call_error("Reallocation failure");
+ return false;
+ }
+
+ /* Clear between old end and new end. */
+ if (clear && size > t->bytelen) {
+ char *old_end = (char *)(t + 1) + t->bytelen;
+ memset(old_end, 0, size - t->bytelen);
+ }
+
+ /* Update length. */
+ t->bytelen = size;
+ update_bounds(t, sizeof(struct tal_hdr) + size);
+
+ /* If it didn't move, we're done! */
+ if (t != old_t) {
+ /* Fix up linked list pointers. */
+ t->list.next->prev = t->list.prev->next = &t->list;
+
+ /* Copy take() property. */
+ if (taken(from_tal_hdr(old_t)))
+ take(from_tal_hdr(t));
+
+ /* Fix up child property's parent pointer. */
+ child = find_property(t, CHILDREN);
+ if (child) {
+ assert(child->parent == old_t);
+ child->parent = t;
+ }
+ *ctxp = from_tal_hdr(debug_tal(t));
+ if (notifiers)
+ notify(t, TAL_NOTIFY_MOVE, from_tal_hdr(old_t), 0);
+ }
+ if (notifiers)
+ notify(t, TAL_NOTIFY_RESIZE, (void *)size, 0);
+
+ return true;
+}
+
+bool tal_expand_(tal_t **ctxp, const void *src, size_t size, size_t count)
+{
+ size_t old_len;
+ bool ret = false;
+
+ old_len = debug_tal(to_tal_hdr(*ctxp))->bytelen;
+
+ /* Check for additive overflow */
+ if (old_len + count * size < old_len) {
+ call_error("dup size overflow");
+ goto out;
+ }
+
+ /* Don't point src inside thing we're expanding! */
+ assert(src < *ctxp
+ || (char *)src >= (char *)(*ctxp) + old_len);
+
+ if (!tal_resize_(ctxp, size, old_len/size + count, false))
+ goto out;
+
+ memcpy((char *)*ctxp + old_len, src, count * size);
+ ret = true;
+
+out:
+ if (taken(src))
+ tal_free(src);
+ return ret;
+}
+
+void *tal_dup_(const tal_t *ctx, const void *p, size_t size,
+ size_t n, size_t extra, bool nullok, const char *label)
+{
+ void *ret;
+ size_t nbytes = size;
+
+ if (nullok && p == NULL) {
+ /* take(NULL) works. */
+ (void)taken(p);
+ return NULL;
+ }
+
+ if (!adjust_size(&nbytes, n)) {
+ if (taken(p))
+ tal_free(p);
+ return NULL;
+ }
+
+ /* Beware addition overflow! */
+ if (n + extra < n) {
+ call_error("dup size overflow");
+ if (taken(p))
+ tal_free(p);
+ return NULL;
+ }
+
+ if (taken(p)) {
+ if (unlikely(!p))
+ return NULL;
+ if (unlikely(!tal_resize_((void **)&p, size, n + extra, false)))
+ return tal_free(p);
+ if (unlikely(!tal_steal(ctx, p)))
+ return tal_free(p);
+ return (void *)p;
+ }
+
+ ret = tal_alloc_arr_(ctx, size, n + extra, false, label);
+ if (ret)
+ memcpy(ret, p, nbytes);
+ return ret;
+}
+
+void *tal_dup_talarr_(const tal_t *ctx, const tal_t *src TAKES, const char *label)
+{
+ return tal_dup_(ctx, src, 1, tal_bytelen(src), 0, true, label);
+}
+
+void tal_set_backend(void *(*alloc_fn)(size_t size),
+ void *(*resize_fn)(void *, size_t size),
+ void (*free_fn)(void *),
+ void (*error_fn)(const char *msg))
+{
+ if (alloc_fn)
+ allocfn = alloc_fn;
+ if (resize_fn)
+ resizefn = resize_fn;
+ if (free_fn)
+ freefn = free_fn;
+ if (error_fn)
+ errorfn = error_fn;
+}
+
+#ifdef CCAN_TAL_DEBUG
+static void dump_node(unsigned int indent, const struct tal_hdr *t)
+{
+ unsigned int i;
+ const struct prop_hdr *p;
+
+ for (i = 0; i < indent; i++)
+ fprintf(stderr, " ");
+ fprintf(stderr, "%p len=%zu", t, t->bytelen);
+ for (p = t->prop; p; p = p->next) {
+ struct children *c;
+ struct name *n;
+ struct notifier *no;
+ if (is_literal(p)) {
+ fprintf(stderr, " \"%s\"", (const char *)p);
+ break;
+ }
+ switch (p->type) {
+ case CHILDREN:
+ c = (struct children *)p;
+ fprintf(stderr, " CHILDREN(%p):parent=%p,children={%p,%p}",
+ p, c->parent,
+ c->children.n.prev, c->children.n.next);
+ break;
+ case NAME:
+ n = (struct name *)p;
+ fprintf(stderr, " NAME(%p):%s", p, n->name);
+ break;
+ case NOTIFIER:
+ no = (struct notifier *)p;
+ fprintf(stderr, " NOTIFIER(%p):fn=%p", p, no->u.notifyfn);
+ break;
+ default:
+ fprintf(stderr, " **UNKNOWN(%p):%i**", p, p->type);
+ }
+ }
+ fprintf(stderr, "\n");
+}
+
+static void tal_dump_(unsigned int level, const struct tal_hdr *t)
+{
+ struct children *children;
+
+ dump_node(level, t);
+
+ children = find_property(t, CHILDREN);
+ if (children) {
+ struct tal_hdr *i;
+
+ list_for_each(&children->children, i, list)
+ tal_dump_(level + 1, i);
+ }
+}
+
+void tal_dump(void)
+{
+ tal_dump_(0, &null_parent.hdr);
+}
+#endif /* CCAN_TAL_DEBUG */
+
+#ifndef NDEBUG
+static bool check_err(struct tal_hdr *t, const char *errorstr,
+ const char *errmsg)
+{
+ if (errorstr) {
+ /* Try not to malloc: it may be corrupted. */
+ char msg[strlen(errorstr) + 20 + strlen(errmsg) + 1];
+ sprintf(msg, "%s:%p %s", errorstr, from_tal_hdr(t), errmsg);
+ call_error(msg);
+ }
+ return false;
+}
+
+static bool check_node(struct children *parent_child,
+ struct tal_hdr *t, const char *errorstr)
+{
+ struct prop_hdr *p;
+ struct name *name = NULL;
+ struct children *children = NULL;
+
+ if (!in_bounds(t))
+ return check_err(t, errorstr, "invalid pointer");
+
+ if (ignore_destroying_bit(t->parent_child) != parent_child)
+ return check_err(t, errorstr, "incorrect parent");
+
+ for (p = t->prop; p; p = p->next) {
+ if (is_literal(p)) {
+ if (name)
+ return check_err(t, errorstr,
+ "has extra literal");
+ break;
+ }
+ if (!in_bounds(p))
+ return check_err(t, errorstr,
+ "has bad property pointer");
+
+ switch (p->type) {
+ case CHILDREN:
+ if (children)
+ return check_err(t, errorstr,
+ "has two child nodes");
+ children = (struct children *)p;
+ break;
+ case NOTIFIER:
+ break;
+ case NAME:
+ if (name)
+ return check_err(t, errorstr,
+ "has two names");
+ name = (struct name *)p;
+ break;
+ default:
+ return check_err(t, errorstr, "has unknown property");
+ }
+ }
+ if (children) {
+ struct tal_hdr *i;
+
+ if (!list_check(&children->children, errorstr))
+ return false;
+ list_for_each(&children->children, i, list) {
+ if (!check_node(children, i, errorstr))
+ return false;
+ }
+ }
+ return true;
+}
+
+bool tal_check(const tal_t *ctx, const char *errorstr)
+{
+ struct tal_hdr *t = to_tal_hdr_or_null(ctx);
+
+ return check_node(ignore_destroying_bit(t->parent_child), t, errorstr);
+}
+#else /* NDEBUG */
+bool tal_check(const tal_t *ctx, const char *errorstr)
+{
+ return true;
+}
+#endif
diff --git a/ccan/ccan/tal/tal.h b/ccan/ccan/tal/tal.h
@@ -0,0 +1,553 @@
+/* Licensed under BSD-MIT - see LICENSE file for details */
+#ifndef CCAN_TAL_H
+#define CCAN_TAL_H
+#include "../config.h"
+#include "../compiler.h"
+#include "likely.h"
+#include "typesafe_cb.h"
+#include "str.h"
+#include "take.h"
+
+#include <stdlib.h>
+#include <stdbool.h>
+#include <stdarg.h>
+
+/**
+ * tal_t - convenient alias for void to mark tal pointers.
+ *
+ * Since any pointer can be a tal-allocated pointer, it's often
+ * useful to use this typedef to mark them explicitly.
+ */
+typedef void tal_t;
+
+/**
+ * tal - basic allocator function
+ * @ctx: NULL, or tal allocated object to be parent.
+ * @type: the type to allocate.
+ *
+ * Allocates a specific type, with a given parent context. The name
+ * of the object is a string of the type, but if CCAN_TAL_DEBUG is
+ * defined it also contains the file and line which allocated it.
+ *
+ * tal_count() of the return will be 1.
+ *
+ * Example:
+ * int *p = tal(NULL, int);
+ * *p = 1;
+ */
+#define tal(ctx, type) \
+ tal_label(ctx, type, TAL_LABEL(type, ""))
+
+/**
+ * talz - zeroing allocator function
+ * @ctx: NULL, or tal allocated object to be parent.
+ * @type: the type to allocate.
+ *
+ * Equivalent to tal() followed by memset() to zero.
+ *
+ * Example:
+ * p = talz(NULL, int);
+ * assert(*p == 0);
+ */
+#define talz(ctx, type) \
+ talz_label(ctx, type, TAL_LABEL(type, ""))
+
+/**
+ * tal_free - free a tal-allocated pointer.
+ * @p: NULL, or tal allocated object to free.
+ *
+ * This calls the destructors for p (if any), then does the same for all its
+ * children (recursively) before finally freeing the memory. It returns
+ * NULL, for convenience.
+ *
+ * Note: errno is preserved by this call, and also saved and restored
+ * for any destructors or notifiers.
+ *
+ * Example:
+ * p = tal_free(p);
+ */
+void *tal_free(const tal_t *p);
+
+/**
+ * tal_arr - allocate an array of objects.
+ * @ctx: NULL, or tal allocated object to be parent.
+ * @type: the type to allocate.
+ * @count: the number to allocate.
+ *
+ * tal_count() of the returned pointer will be @count.
+ *
+ * Example:
+ * p = tal_arr(NULL, int, 2);
+ * p[0] = 0;
+ * p[1] = 1;
+ */
+#define tal_arr(ctx, type, count) \
+ tal_arr_label(ctx, type, count, TAL_LABEL(type, "[]"))
+
+/**
+ * tal_arrz - allocate an array of zeroed objects.
+ * @ctx: NULL, or tal allocated object to be parent.
+ * @type: the type to allocate.
+ * @count: the number to allocate.
+ *
+ * Equivalent to tal_arr() followed by memset() to zero.
+ *
+ * Example:
+ * p = tal_arrz(NULL, int, 2);
+ * assert(p[0] == 0 && p[1] == 0);
+ */
+#define tal_arrz(ctx, type, count) \
+ tal_arrz_label(ctx, type, count, TAL_LABEL(type, "[]"))
+
+/**
+ * tal_resize - enlarge or reduce a tal object.
+ * @p: A pointer to the tal allocated array to resize.
+ * @count: the number to allocate.
+ *
+ * This returns true on success (and may move *@p), or false on failure.
+ * On success, tal_count() of *@p will be @count.
+ *
+ * Note: if *p is take(), it will still be take() upon return, even if it
+ * has been moved.
+ *
+ * Example:
+ * tal_resize(&p, 100);
+ */
+#define tal_resize(p, count) \
+ tal_resize_((void **)(p), sizeof**(p), (count), false)
+
+/**
+ * tal_resizez - enlarge or reduce a tal object; zero out extra.
+ * @p: A pointer to the tal allocated array to resize.
+ * @count: the number to allocate.
+ *
+ * This returns true on success (and may move *@p), or false on failure.
+ *
+ * Example:
+ * tal_resizez(&p, 200);
+ */
+#define tal_resizez(p, count) \
+ tal_resize_((void **)(p), sizeof**(p), (count), true)
+
+/**
+ * tal_steal - change the parent of a tal-allocated pointer.
+ * @ctx: The new parent.
+ * @ptr: The tal allocated object to move, or NULL.
+ *
+ * This may need to perform an allocation, in which case it may fail; thus
+ * it can return NULL, otherwise returns @ptr. If @ptr is NULL, this function does
+ * nothing.
+ */
+#if HAVE_STATEMENT_EXPR
+/* Weird macro avoids gcc's 'warning: value computed is not used'. */
+#define tal_steal(ctx, ptr) \
+ ({ (tal_typeof(ptr) tal_steal_((ctx),(ptr))); })
+#else
+#define tal_steal(ctx, ptr) \
+ (tal_typeof(ptr) tal_steal_((ctx),(ptr)))
+#endif
+
+/**
+ * tal_add_destructor - add a callback function when this context is destroyed.
+ * @ptr: The tal allocated object.
+ * @function: the function to call before it's freed.
+ *
+ * This is a more convenient form of tal_add_notifier(@ptr,
+ * TAL_NOTIFY_FREE, ...), in that the function prototype takes only @ptr.
+ *
+ * Note that this can only fail if your allocfn fails and your errorfn returns.
+ */
+#define tal_add_destructor(ptr, function) \
+ tal_add_destructor_((ptr), typesafe_cb(void, void *, (function), (ptr)))
+
+/**
+ * tal_del_destructor - remove a destructor callback function.
+ * @ptr: The tal allocated object.
+ * @function: the function to call before it's freed.
+ *
+ * If @function has not been successfully added as a destructor, this returns
+ * false. Note that if we're inside the destructor call itself, this will
+ * return false.
+ */
+#define tal_del_destructor(ptr, function) \
+ tal_del_destructor_((ptr), typesafe_cb(void, void *, (function), (ptr)))
+
+/**
+ * tal_add_destructor2 - add a 2-arg callback function when context is destroyed.
+ * @ptr: The tal allocated object.
+ * @function: the function to call before it's freed.
+ * @arg: the extra argument to the function.
+ *
+ * Sometimes an extra argument is required for a destructor; this
+ * saves the extra argument internally to avoid the caller having to
+ * do an extra allocation.
+ *
+ * Note that this can only fail if your allocfn fails and your errorfn returns.
+ */
+#define tal_add_destructor2(ptr, function, arg) \
+ tal_add_destructor2_((ptr), \
+ typesafe_cb_cast(void (*)(tal_t *, void *), \
+ void (*)(__typeof__(ptr), \
+ __typeof__(arg)), \
+ (function)), \
+ (arg))
+
+/**
+ * tal_del_destructor - remove a destructor callback function.
+ * @ptr: The tal allocated object.
+ * @function: the function to call before it's freed.
+ *
+ * If @function has not been successfully added as a destructor, this returns
+ * false. Note that if we're inside the destructor call itself, this will
+ * return false.
+ */
+#define tal_del_destructor(ptr, function) \
+ tal_del_destructor_((ptr), typesafe_cb(void, void *, (function), (ptr)))
+
+/**
+ * tal_del_destructor2 - remove 2-arg callback function.
+ * @ptr: The tal allocated object.
+ * @function: the function to call before it's freed.
+ * @arg: the extra argument to the function.
+ *
+ * If @function has not been successfully added as a destructor with
+ * @arg, this returns false.
+ */
+#define tal_del_destructor2(ptr, function, arg) \
+ tal_del_destructor2_((ptr), \
+ typesafe_cb_cast(void (*)(tal_t *, void *), \
+ void (*)(__typeof__(ptr), \
+ __typeof__(arg)), \
+ (function)), \
+ (arg))
+enum tal_notify_type {
+ TAL_NOTIFY_FREE = 1,
+ TAL_NOTIFY_STEAL = 2,
+ TAL_NOTIFY_MOVE = 4,
+ TAL_NOTIFY_RESIZE = 8,
+ TAL_NOTIFY_RENAME = 16,
+ TAL_NOTIFY_ADD_CHILD = 32,
+ TAL_NOTIFY_DEL_CHILD = 64,
+ TAL_NOTIFY_ADD_NOTIFIER = 128,
+ TAL_NOTIFY_DEL_NOTIFIER = 256
+};
+
+/**
+ * tal_add_notifier - add a callback function when this context changes.
+ * @ptr: The tal allocated object, or NULL.
+ * @types: Bitwise OR of the types the callback is interested in.
+ * @callback: the function to call.
+ *
+ * Note that this can only fail if your allocfn fails and your errorfn
+ * returns. Also note that notifiers are not reliable in the case
+ * where an allocation fails, as they may be called before any
+ * allocation is actually done.
+ *
+ * TAL_NOTIFY_FREE is called when @ptr is freed, either directly or
+ * because an ancestor is freed: @info is the argument to tal_free().
+ * It is exactly equivalent to a destructor, with more information.
+ * errno is set to the value it was at the call of tal_free().
+ *
+ * TAL_NOTIFY_STEAL is called when @ptr's parent changes: @info is the
+ * new parent.
+ *
+ * TAL_NOTIFY_MOVE is called when @ptr is realloced (via tal_resize)
+ * and moved. In this case, @ptr arg here is the new memory, and
+ * @info is the old pointer.
+ *
+ * TAL_NOTIFY_RESIZE is called when @ptr is realloced via tal_resize:
+ * @info is the new size, in bytes. If the pointer has moved,
+ * TAL_NOTIFY_MOVE callbacks are called first.
+ *
+ * TAL_NOTIFY_ADD_CHILD/TAL_NOTIFY_DEL_CHILD are called when @ptr is
+ * the context for a tal() allocating call, or a direct child is
+ * tal_free()d: @info is the child. Note that TAL_NOTIFY_DEL_CHILD is
+ * not called when this context is tal_free()d: TAL_NOTIFY_FREE is
+ * considered sufficient for that case.
+ *
+ * TAL_NOTIFY_ADD_NOTIFIER/TAL_NOTIFIER_DEL_NOTIFIER are called when a
+ * notifier is added or removed (not for this notifier): @info is the
+ * callback. This is also called for tal_add_destructor and
+ * tal_del_destructor.
+ */
+#define tal_add_notifier(ptr, types, callback) \
+ tal_add_notifier_((ptr), (types), \
+ typesafe_cb_postargs(void, tal_t *, (callback), \
+ (ptr), \
+ enum tal_notify_type, void *))
+
+/**
+ * tal_del_notifier - remove a notifier callback function.
+ * @ptr: The tal allocated object.
+ * @callback: the function to call.
+ */
+#define tal_del_notifier(ptr, callback) \
+ tal_del_notifier_((ptr), \
+ typesafe_cb_postargs(void, void *, (callback), \
+ (ptr), \
+ enum tal_notify_type, void *), \
+ false, NULL)
+
+/**
+ * tal_set_name - attach a name to a tal pointer.
+ * @ptr: The tal allocated object.
+ * @name: The name to use.
+ *
+ * The name is copied, unless we're certain it's a string literal.
+ */
+#define tal_set_name(ptr, name) \
+ tal_set_name_((ptr), (name), TAL_IS_LITERAL(name))
+
+/**
+ * tal_name - get the name for a tal pointer.
+ * @ptr: The tal allocated object.
+ *
+ * Returns NULL if no name has been set.
+ */
+const char *tal_name(const tal_t *ptr);
+
+/**
+ * tal_count - get the count of objects in a tal object.
+ * @ptr: The tal allocated object (or NULL)
+ *
+ * Returns 0 if @ptr is NULL. Note that if the allocation was done as a
+ * different type to @ptr, the result may not match the @count argument
+ * (or implied 1) of that allocation!
+ */
+#define tal_count(p) (tal_bytelen(p) / sizeof(*p))
+
+/**
+ * tal_bytelen - get the count of bytes in a tal object.
+ * @ptr: The tal allocated object (or NULL)
+ *
+ * Returns 0 if @ptr is NULL.
+ */
+size_t tal_bytelen(const tal_t *ptr);
+
+/**
+ * tal_first - get the first immediate tal object child.
+ * @root: The tal allocated object to start with, or NULL.
+ *
+ * Returns NULL if there are no children.
+ */
+tal_t *tal_first(const tal_t *root);
+
+/**
+ * tal_next - get the next immediate tal object child.
+ * @prev: The return value from tal_first or tal_next.
+ *
+ * Returns NULL if there are no more immediate children. This should be safe to
+ * call on an altering tree unless @prev is no longer valid.
+ */
+tal_t *tal_next(const tal_t *prev);
+
+/**
+ * tal_parent - get the parent of a tal object.
+ * @ctx: The tal allocated object.
+ *
+ * Returns the parent, which may be NULL. Returns NULL if @ctx is NULL.
+ */
+tal_t *tal_parent(const tal_t *ctx);
+
+/**
+ * tal_dup - duplicate an object.
+ * @ctx: The tal allocated object to be parent of the result (may be NULL).
+ * @type: the type (should match type of @p!)
+ * @p: the object to copy (or reparented if take()). Must not be NULL.
+ */
+#define tal_dup(ctx, type, p) \
+ tal_dup_label(ctx, type, p, TAL_LABEL(type, ""), false)
+
+/**
+ * tal_dup_or_null - duplicate an object, or just pass NULL.
+ * @ctx: The tal allocated object to be parent of the result (may be NULL).
+ * @type: the type (should match type of @p!)
+ * @p: the object to copy (or reparented if take())
+ *
+ * if @p is NULL, just return NULL, otherwise to tal_dup().
+ */
+#define tal_dup_or_null(ctx, type, p) \
+ tal_dup_label(ctx, type, p, TAL_LABEL(type, ""), true)
+
+/**
+ * tal_dup_arr - duplicate an array.
+ * @ctx: The tal allocated object to be parent of the result (may be NULL).
+ * @type: the type (should match type of @p!)
+ * @p: the array to copy (or resized & reparented if take())
+ * @n: the number of sizeof(type) entries to copy.
+ * @extra: the number of extra sizeof(type) entries to allocate.
+ */
+#define tal_dup_arr(ctx, type, p, n, extra) \
+ tal_dup_arr_label(ctx, type, p, n, extra, TAL_LABEL(type, "[]"))
+
+
+/**
+ * tal_dup_arr - duplicate a tal array.
+ * @ctx: The tal allocated object to be parent of the result (may be NULL).
+ * @type: the type (should match type of @p!)
+ * @p: the tal array to copy (or resized & reparented if take())
+ *
+ * The common case of duplicating an entire tal array.
+ */
+#define tal_dup_talarr(ctx, type, p) \
+ ((type *)tal_dup_talarr_((ctx), tal_typechk_(p, type *), \
+ TAL_LABEL(type, "[]")))
+/* Lower-level interfaces, where you want to supply your own label string. */
+#define tal_label(ctx, type, label) \
+ ((type *)tal_alloc_((ctx), sizeof(type), false, label))
+#define talz_label(ctx, type, label) \
+ ((type *)tal_alloc_((ctx), sizeof(type), true, label))
+#define tal_arr_label(ctx, type, count, label) \
+ ((type *)tal_alloc_arr_((ctx), sizeof(type), (count), false, label))
+#define tal_arrz_label(ctx, type, count, label) \
+ ((type *)tal_alloc_arr_((ctx), sizeof(type), (count), true, label))
+#define tal_dup_label(ctx, type, p, label, nullok) \
+ ((type *)tal_dup_((ctx), tal_typechk_(p, type *), \
+ sizeof(type), 1, 0, nullok, \
+ label))
+#define tal_dup_arr_label(ctx, type, p, n, extra, label) \
+ ((type *)tal_dup_((ctx), tal_typechk_(p, type *), \
+ sizeof(type), (n), (extra), false, \
+ label))
+
+/**
+ * tal_set_backend - set the allocation or error functions to use
+ * @alloc_fn: allocator or NULL (default is malloc)
+ * @resize_fn: re-allocator or NULL (default is realloc)
+ * @free_fn: free function or NULL (default is free)
+ * @error_fn: called on errors or NULL (default is abort)
+ *
+ * The defaults are set up so tal functions never return NULL, but you
+ * can override error_fn to change that. error_fn can return, and is
+ * called if alloc_fn or resize_fn fail.
+ *
+ * If any parameter is NULL, that function is unchanged.
+ */
+void tal_set_backend(void *(*alloc_fn)(size_t size),
+ void *(*resize_fn)(void *, size_t size),
+ void (*free_fn)(void *),
+ void (*error_fn)(const char *msg));
+
+/**
+ * tal_expand - expand a tal array with contents.
+ * @a1p: a pointer to the tal array to expand.
+ * @a2: the second array (can be take()).
+ * @num2: the number of elements in the second array.
+ *
+ * Note that *@a1 and @a2 should be the same type. tal_count(@a1) will
+ * be increased by @num2.
+ *
+ * Example:
+ * int *arr1 = tal_arrz(NULL, int, 2);
+ * int arr2[2] = { 1, 3 };
+ *
+ * tal_expand(&arr1, arr2, 2);
+ * assert(tal_count(arr1) == 4);
+ * assert(arr1[2] == 1);
+ * assert(arr1[3] == 3);
+ */
+#define tal_expand(a1p, a2, num2) \
+ tal_expand_((void **)(a1p), (a2), sizeof**(a1p), \
+ (num2) + 0*sizeof(*(a1p) == (a2)))
+
+/**
+ * tal_cleanup - remove pointers from NULL node
+ *
+ * Internally, tal keeps a list of nodes allocated from @ctx NULL; this
+ * prevents valgrind from noticing memory leaks. This re-initializes
+ * that list to empty.
+ *
+ * It also calls take_cleanup() for you.
+ */
+void tal_cleanup(void);
+
+
+/**
+ * tal_check - sanity check a tal context and its children.
+ * @ctx: a tal context, or NULL.
+ * @errorstr: a string to prepend calls to error_fn, or NULL.
+ *
+ * This sanity-checks a tal tree (unless NDEBUG is defined, in which case
+ * it simply returns true). If errorstr is not null, error_fn is called
+ * when a problem is found, otherwise it is not.
+ *
+ * See also:
+ * tal_set_backend()
+ */
+bool tal_check(const tal_t *ctx, const char *errorstr);
+
+#ifdef CCAN_TAL_DEBUG
+/**
+ * tal_dump - dump entire tal tree to stderr.
+ *
+ * This is a helper for debugging tal itself, which dumps all the tal internal
+ * state.
+ */
+void tal_dump(void);
+#endif
+
+/* Internal support functions */
+#ifndef TAL_LABEL
+#ifdef CCAN_TAL_NO_LABELS
+#define TAL_LABEL(type, arr) NULL
+#else
+#ifdef CCAN_TAL_DEBUG
+#define TAL_LABEL(type, arr) \
+ __FILE__ ":" stringify(__LINE__) ":" stringify(type) arr
+#else
+#define TAL_LABEL(type, arr) stringify(type) arr
+#endif /* CCAN_TAL_DEBUG */
+#endif
+#endif
+
+#if HAVE_BUILTIN_CONSTANT_P
+#define TAL_IS_LITERAL(str) __builtin_constant_p(str)
+#else
+#define TAL_IS_LITERAL(str) (sizeof(&*(str)) != sizeof(char *))
+#endif
+
+bool tal_set_name_(tal_t *ctx, const char *name, bool literal);
+
+#if HAVE_TYPEOF
+#define tal_typeof(ptr) (__typeof__(ptr))
+#if HAVE_STATEMENT_EXPR
+/* Careful: ptr can be const foo *, ptype is foo *. Also, ptr could
+ * be an array, eg "hello". */
+#define tal_typechk_(ptr, ptype) ({ __typeof__((ptr)+0) _p = (ptype)(ptr); _p; })
+#else
+#define tal_typechk_(ptr, ptype) (ptr)
+#endif
+#else /* !HAVE_TYPEOF */
+#define tal_typeof(ptr)
+#define tal_typechk_(ptr, ptype) (ptr)
+#endif
+
+void *tal_alloc_(const tal_t *ctx, size_t bytes, bool clear, const char *label);
+void *tal_alloc_arr_(const tal_t *ctx, size_t bytes, size_t count, bool clear,
+ const char *label);
+
+void *tal_dup_(const tal_t *ctx, const void *p TAKES, size_t size,
+ size_t n, size_t extra, bool nullok, const char *label);
+void *tal_dup_talarr_(const tal_t *ctx, const tal_t *src TAKES,
+ const char *label);
+
+tal_t *tal_steal_(const tal_t *new_parent, const tal_t *t);
+
+bool tal_resize_(tal_t **ctxp, size_t size, size_t count, bool clear);
+bool tal_expand_(tal_t **ctxp, const void *src TAKES, size_t size, size_t count);
+
+bool tal_add_destructor_(const tal_t *ctx, void (*destroy)(void *me));
+bool tal_add_destructor2_(const tal_t *ctx, void (*destroy)(void *me, void *arg),
+ void *arg);
+bool tal_del_destructor_(const tal_t *ctx, void (*destroy)(void *me));
+bool tal_del_destructor2_(const tal_t *ctx, void (*destroy)(void *me, void *arg),
+ void *arg);
+
+bool tal_add_notifier_(const tal_t *ctx, enum tal_notify_type types,
+ void (*notify)(tal_t *ctx, enum tal_notify_type,
+ void *info));
+bool tal_del_notifier_(const tal_t *ctx,
+ void (*notify)(tal_t *ctx, enum tal_notify_type,
+ void *info),
+ bool match_extra_arg, void *arg);
+#endif /* CCAN_TAL_H */
diff --git a/ccan/ccan/typesafe_cb/typesafe_cb.h b/ccan/ccan/typesafe_cb/typesafe_cb.h
@@ -0,0 +1,134 @@
+/* CC0 (Public domain) - see LICENSE file for details */
+#ifndef CCAN_TYPESAFE_CB_H
+#define CCAN_TYPESAFE_CB_H
+#include "../config.h"
+
+#if HAVE_TYPEOF && HAVE_BUILTIN_CHOOSE_EXPR && HAVE_BUILTIN_TYPES_COMPATIBLE_P
+/**
+ * typesafe_cb_cast - only cast an expression if it matches a given type
+ * @desttype: the type to cast to
+ * @oktype: the type we allow
+ * @expr: the expression to cast
+ *
+ * This macro is used to create functions which allow multiple types.
+ * The result of this macro is used somewhere that a @desttype type is
+ * expected: if @expr is exactly of type @oktype, then it will be
+ * cast to @desttype type, otherwise left alone.
+ *
+ * This macro can be used in static initializers.
+ *
+ * This is merely useful for warnings: if the compiler does not
+ * support the primitives required for typesafe_cb_cast(), it becomes an
+ * unconditional cast, and the @oktype argument is not used. In
+ * particular, this means that @oktype can be a type which uses the
+ * "typeof": it will not be evaluated if typeof is not supported.
+ *
+ * Example:
+ * // We can take either an unsigned long or a void *.
+ * void _set_some_value(void *val);
+ * #define set_some_value(e) \
+ * _set_some_value(typesafe_cb_cast(void *, unsigned long, (e)))
+ */
+#define typesafe_cb_cast(desttype, oktype, expr) \
+ __builtin_choose_expr( \
+ __builtin_types_compatible_p(__typeof__(0?(expr):(expr)), \
+ oktype), \
+ (desttype)(expr), (expr))
+#else
+#define typesafe_cb_cast(desttype, oktype, expr) ((desttype)(expr))
+#endif
+
+/**
+ * typesafe_cb_cast3 - only cast an expression if it matches given types
+ * @desttype: the type to cast to
+ * @ok1: the first type we allow
+ * @ok2: the second type we allow
+ * @ok3: the third type we allow
+ * @expr: the expression to cast
+ *
+ * This is a convenient wrapper for multiple typesafe_cb_cast() calls.
+ * You can chain them inside each other (ie. use typesafe_cb_cast()
+ * for expr) if you need more than 3 arguments.
+ *
+ * Example:
+ * // We can take either a long, unsigned long, void * or a const void *.
+ * void _set_some_value(void *val);
+ * #define set_some_value(expr) \
+ * _set_some_value(typesafe_cb_cast3(void *,, \
+ * long, unsigned long, const void *,\
+ * (expr)))
+ */
+#define typesafe_cb_cast3(desttype, ok1, ok2, ok3, expr) \
+ typesafe_cb_cast(desttype, ok1, \
+ typesafe_cb_cast(desttype, ok2, \
+ typesafe_cb_cast(desttype, ok3, \
+ (expr))))
+
+/**
+ * typesafe_cb - cast a callback function if it matches the arg
+ * @rtype: the return type of the callback function
+ * @atype: the (pointer) type which the callback function expects.
+ * @fn: the callback function to cast
+ * @arg: the (pointer) argument to hand to the callback function.
+ *
+ * If a callback function takes a single argument, this macro does
+ * appropriate casts to a function which takes a single atype argument if the
+ * callback provided matches the @arg.
+ *
+ * It is assumed that @arg is of pointer type: usually @arg is passed
+ * or assigned to a void * elsewhere anyway.
+ *
+ * Example:
+ * void _register_callback(void (*fn)(void *arg), void *arg);
+ * #define register_callback(fn, arg) \
+ * _register_callback(typesafe_cb(void, (fn), void*, (arg)), (arg))
+ */
+#define typesafe_cb(rtype, atype, fn, arg) \
+ typesafe_cb_cast(rtype (*)(atype), \
+ rtype (*)(__typeof__(arg)), \
+ (fn))
+
+/**
+ * typesafe_cb_preargs - cast a callback function if it matches the arg
+ * @rtype: the return type of the callback function
+ * @atype: the (pointer) type which the callback function expects.
+ * @fn: the callback function to cast
+ * @arg: the (pointer) argument to hand to the callback function.
+ *
+ * This is a version of typesafe_cb() for callbacks that take other arguments
+ * before the @arg.
+ *
+ * Example:
+ * void _register_callback(void (*fn)(int, void *arg), void *arg);
+ * #define register_callback(fn, arg) \
+ * _register_callback(typesafe_cb_preargs(void, void *, \
+ * (fn), (arg), int), \
+ * (arg))
+ */
+#define typesafe_cb_preargs(rtype, atype, fn, arg, ...) \
+ typesafe_cb_cast(rtype (*)(__VA_ARGS__, atype), \
+ rtype (*)(__VA_ARGS__, __typeof__(arg)), \
+ (fn))
+
+/**
+ * typesafe_cb_postargs - cast a callback function if it matches the arg
+ * @rtype: the return type of the callback function
+ * @atype: the (pointer) type which the callback function expects.
+ * @fn: the callback function to cast
+ * @arg: the (pointer) argument to hand to the callback function.
+ *
+ * This is a version of typesafe_cb() for callbacks that take other arguments
+ * after the @arg.
+ *
+ * Example:
+ * void _register_callback(void (*fn)(void *arg, int), void *arg);
+ * #define register_callback(fn, arg) \
+ * _register_callback(typesafe_cb_postargs(void, (fn), void *, \
+ * (arg), int), \
+ * (arg))
+ */
+#define typesafe_cb_postargs(rtype, atype, fn, arg, ...) \
+ typesafe_cb_cast(rtype (*)(atype, __VA_ARGS__), \
+ rtype (*)(__typeof__(arg), __VA_ARGS__), \
+ (fn))
+#endif /* CCAN_CAST_IF_TYPE_H */
diff --git a/ccan/ccan/utf8/utf8.c b/ccan/ccan/utf8/utf8.c
@@ -0,0 +1,199 @@
+/* MIT (BSD) license - see LICENSE file for details - taken from ccan. thanks rusty! */
+
+#include "utf8.h"
+#include <errno.h>
+#include <stdlib.h>
+
+/* I loved this table, so I stole it: */
+/*
+ * Copyright (c) 2017 Christian Hansen <chansen@cpan.org>
+ * <https://github.com/chansen/c-utf8-valid>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice, this
+ * list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
+ * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+/*
+ * UTF-8 Encoding Form
+ *
+ * U+0000..U+007F 0xxxxxxx <= 7 bits
+ * U+0080..U+07FF 110xxxxx 10xxxxxx <= 11 bits
+ * U+0800..U+FFFF 1110xxxx 10xxxxxx 10xxxxxx <= 16 bits
+ * U+10000..U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx <= 21 bits
+ *
+ *
+ * U+0000..U+007F 00..7F
+ * N C0..C1 80..BF 1100000x 10xxxxxx
+ * U+0080..U+07FF C2..DF 80..BF
+ * N E0 80..9F 80..BF 11100000 100xxxxx
+ * U+0800..U+0FFF E0 A0..BF 80..BF
+ * U+1000..U+CFFF E1..EC 80..BF 80..BF
+ * U+D000..U+D7FF ED 80..9F 80..BF
+ * S ED A0..BF 80..BF 11101101 101xxxxx
+ * U+E000..U+FFFF EE..EF 80..BF 80..BF
+ * N F0 80..8F 80..BF 80..BF 11110000 1000xxxx
+ * U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
+ * U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
+ * U+100000..U+10FFFF F4 80..8F 80..BF 80..BF 11110100 1000xxxx
+ *
+ * Legend:
+ * N = Non-shortest form
+ * S = Surrogates
+ */
+bool utf8_decode(struct utf8_state *utf8_state, char c)
+{
+ if (utf8_state->used_len == utf8_state->total_len) {
+ utf8_state->used_len = 1;
+ /* First character in sequence. */
+ if (((unsigned char)c & 0x80) == 0) {
+ /* ASCII, easy. */
+ if (c == 0)
+ goto bad_encoding;
+ utf8_state->total_len = 1;
+ utf8_state->c = c;
+ goto finished_decoding;
+ } else if (((unsigned char)c & 0xE0) == 0xC0) {
+ utf8_state->total_len = 2;
+ utf8_state->c = ((unsigned char)c & 0x1F);
+ return false;
+ } else if (((unsigned char)c & 0xF0) == 0xE0) {
+ utf8_state->total_len = 3;
+ utf8_state->c = ((unsigned char)c & 0x0F);
+ return false;
+ } else if (((unsigned char)c & 0xF8) == 0xF0) {
+ utf8_state->total_len = 4;
+ utf8_state->c = ((unsigned char)c & 0x07);
+ return false;
+ }
+ goto bad_encoding;
+ }
+
+ if (((unsigned char)c & 0xC0) != 0x80)
+ goto bad_encoding;
+
+ utf8_state->c <<= 6;
+ utf8_state->c |= ((unsigned char)c & 0x3F);
+
+ utf8_state->used_len++;
+ if (utf8_state->used_len == utf8_state->total_len)
+ goto finished_decoding;
+ return false;
+
+finished_decoding:
+ if (utf8_state->c == 0 || utf8_state->c > 0x10FFFF)
+ errno = ERANGE;
+ /* The UTF-16 "surrogate range": illegal in UTF-8 */
+ else if (utf8_state->total_len == 3
+ && (utf8_state->c & 0xFFFFF800) == 0x0000D800)
+ errno = ERANGE;
+ else {
+ int min_bits;
+ switch (utf8_state->total_len) {
+ case 1:
+ min_bits = 0;
+ break;
+ case 2:
+ min_bits = 7;
+ break;
+ case 3:
+ min_bits = 11;
+ break;
+ case 4:
+ min_bits = 16;
+ break;
+ default:
+ abort();
+ }
+ if ((utf8_state->c >> min_bits) == 0)
+ errno = EFBIG;
+ else
+ errno = 0;
+ }
+ return true;
+
+bad_encoding:
+ utf8_state->total_len = utf8_state->used_len;
+ errno = EINVAL;
+ return true;
+}
+
+size_t utf8_encode(uint32_t point, char dest[UTF8_MAX_LEN])
+{
+ if ((point >> 7) == 0) {
+ if (point == 0) {
+ errno = ERANGE;
+ return 0;
+ }
+ /* 0xxxxxxx */
+ dest[0] = point;
+ return 1;
+ }
+
+ if ((point >> 11) == 0) {
+ /* 110xxxxx 10xxxxxx */
+ dest[1] = 0x80 | (point & 0x3F);
+ dest[0] = 0xC0 | (point >> 6);
+ return 2;
+ }
+
+ if ((point >> 16) == 0) {
+ if (point >= 0xD800 && point <= 0xDFFF) {
+ errno = ERANGE;
+ return 0;
+ }
+ /* 1110xxxx 10xxxxxx 10xxxxxx */
+ dest[2] = 0x80 | (point & 0x3F);
+ dest[1] = 0x80 | ((point >> 6) & 0x3F);
+ dest[0] = 0xE0 | (point >> 12);
+ return 3;
+ }
+
+ if (point > 0x10FFFF) {
+ errno = ERANGE;
+ return 0;
+ }
+
+ /* 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx */
+ dest[3] = 0x80 | (point & 0x3F);
+ dest[2] = 0x80 | ((point >> 6) & 0x3F);
+ dest[1] = 0x80 | ((point >> 12) & 0x3F);
+ dest[0] = 0xF0 | (point >> 18);
+ return 4;
+}
+
+/* Check for valid UTF-8 */
+bool utf8_check(const void *vbuf, size_t buflen)
+{
+ const unsigned char *buf = vbuf;
+ struct utf8_state utf8_state = UTF8_STATE_INIT;
+ bool need_more = false;
+
+ for (size_t i = 0; i < buflen; i++) {
+ if (!utf8_decode(&utf8_state, buf[i])) {
+ need_more = true;
+ continue;
+ }
+ need_more = false;
+ if (errno != 0)
+ return false;
+ }
+ return !need_more;
+}
+
diff --git a/ccan/ccan/utf8/utf8.h b/ccan/ccan/utf8/utf8.h
@@ -0,0 +1,57 @@
+/* MIT (BSD) license - see LICENSE file for details */
+#ifndef CCAN_UTF8_H
+#define CCAN_UTF8_H
+#include <inttypes.h>
+#include <stdbool.h>
+#include <string.h>
+
+/* Unicode is limited to 21 bits. */
+#define UTF8_MAX_LEN 4
+
+struct utf8_state {
+ /* How many characters we are expecting as part of this Unicode point */
+ uint16_t total_len;
+ /* How many characters we've already seen. */
+ uint16_t used_len;
+ /* Compound character, aka Unicode point. */
+ uint32_t c;
+};
+
+#define UTF8_STATE_INIT { 0, 0, 0 }
+
+static inline void utf8_state_init(struct utf8_state *utf8_state)
+{
+ memset(utf8_state, 0, sizeof(*utf8_state));
+}
+
+/**
+ * utf8_decode - continue UTF8 decoding with this character.
+ * @utf8_state - initialized UTF8 state.
+ * @c - the character.
+ *
+ * Returns false if it needs another character to give results.
+ * Otherwise returns true, @utf8_state can be reused without initializeation,
+ * and sets errno:
+ * 0: success
+ * EINVAL: bad encoding (including a NUL character).
+ * EFBIG: not a minimal encoding.
+ * ERANGE: encoding of invalid character.
+ *
+ * You can extract the character from @utf8_state->c; @utf8_state->used_len
+ * indicates how many characters have been consumed.
+ */
+bool utf8_decode(struct utf8_state *utf8_state, char c);
+
+/**
+ * utf8_encode - encode a point into UTF8.
+ * @point - Unicode point to include.
+ * @dest - buffer to fill.
+ *
+ * Returns 0 if point was invalid, otherwise bytes of dest used.
+ * Sets errno to ERANGE if point was invalid.
+ */
+size_t utf8_encode(uint32_t point, char dest[UTF8_MAX_LEN]);
+
+/* Check for valid UTF-8 */
+bool utf8_check(const void *vbuf, size_t buflen);
+#endif /* CCAN_UTF8_H */