nanovg.h (28018B)
1 // 2 // Copyright (c) 2013 Mikko Mononen memon@inside.org 3 // 4 // This software is provided 'as-is', without any express or implied 5 // warranty. In no event will the authors be held liable for any damages 6 // arising from the use of this software. 7 // Permission is granted to anyone to use this software for any purpose, 8 // including commercial applications, and to alter it and redistribute it 9 // freely, subject to the following restrictions: 10 // 1. The origin of this software must not be misrepresented; you must not 11 // claim that you wrote the original software. If you use this software 12 // in a product, an acknowledgment in the product documentation would be 13 // appreciated but is not required. 14 // 2. Altered source versions must be plainly marked as such, and must not be 15 // misrepresented as being the original software. 16 // 3. This notice may not be removed or altered from any source distribution. 17 // 18 19 #ifndef NANOVG_H 20 #define NANOVG_H 21 22 #ifdef __cplusplus 23 extern "C" { 24 #endif 25 26 #define NVG_PI 3.14159265358979323846264338327f 27 28 #ifdef _MSC_VER 29 #pragma warning(push) 30 #pragma warning(disable: 4201) // nonstandard extension used : nameless struct/union 31 #endif 32 33 typedef struct NVGcontext NVGcontext; 34 35 struct NVGcolor { 36 union { 37 float rgba[4]; 38 struct { 39 float r,g,b,a; 40 }; 41 }; 42 }; 43 typedef struct NVGcolor NVGcolor; 44 45 struct NVGpaint { 46 float xform[6]; 47 float extent[2]; 48 float radius; 49 float feather; 50 NVGcolor innerColor; 51 NVGcolor outerColor; 52 int image; 53 }; 54 typedef struct NVGpaint NVGpaint; 55 56 enum NVGwinding { 57 NVG_CCW = 1, // Winding for solid shapes 58 NVG_CW = 2, // Winding for holes 59 }; 60 61 enum NVGsolidity { 62 NVG_SOLID = 1, // CCW 63 NVG_HOLE = 2, // CW 64 }; 65 66 enum NVGlineCap { 67 NVG_BUTT, 68 NVG_ROUND, 69 NVG_SQUARE, 70 NVG_BEVEL, 71 NVG_MITER, 72 }; 73 74 enum NVGalign { 75 // Horizontal align 76 NVG_ALIGN_LEFT = 1<<0, // Default, align text horizontally to left. 77 NVG_ALIGN_CENTER = 1<<1, // Align text horizontally to center. 78 NVG_ALIGN_RIGHT = 1<<2, // Align text horizontally to right. 79 // Vertical align 80 NVG_ALIGN_TOP = 1<<3, // Align text vertically to top. 81 NVG_ALIGN_MIDDLE = 1<<4, // Align text vertically to middle. 82 NVG_ALIGN_BOTTOM = 1<<5, // Align text vertically to bottom. 83 NVG_ALIGN_BASELINE = 1<<6, // Default, align text vertically to baseline. 84 }; 85 86 enum NVGblendFactor { 87 NVG_ZERO = 1<<0, 88 NVG_ONE = 1<<1, 89 NVG_SRC_COLOR = 1<<2, 90 NVG_ONE_MINUS_SRC_COLOR = 1<<3, 91 NVG_DST_COLOR = 1<<4, 92 NVG_ONE_MINUS_DST_COLOR = 1<<5, 93 NVG_SRC_ALPHA = 1<<6, 94 NVG_ONE_MINUS_SRC_ALPHA = 1<<7, 95 NVG_DST_ALPHA = 1<<8, 96 NVG_ONE_MINUS_DST_ALPHA = 1<<9, 97 NVG_SRC_ALPHA_SATURATE = 1<<10, 98 }; 99 100 enum NVGcompositeOperation { 101 NVG_SOURCE_OVER, 102 NVG_SOURCE_IN, 103 NVG_SOURCE_OUT, 104 NVG_ATOP, 105 NVG_DESTINATION_OVER, 106 NVG_DESTINATION_IN, 107 NVG_DESTINATION_OUT, 108 NVG_DESTINATION_ATOP, 109 NVG_LIGHTER, 110 NVG_COPY, 111 NVG_XOR, 112 }; 113 114 struct NVGcompositeOperationState { 115 int srcRGB; 116 int dstRGB; 117 int srcAlpha; 118 int dstAlpha; 119 }; 120 typedef struct NVGcompositeOperationState NVGcompositeOperationState; 121 122 struct NVGglyphPosition { 123 const char* str; // Position of the glyph in the input string. 124 float x; // The x-coordinate of the logical glyph position. 125 float minx, maxx; // The bounds of the glyph shape. 126 }; 127 typedef struct NVGglyphPosition NVGglyphPosition; 128 129 struct NVGtextRow { 130 const char* start; // Pointer to the input text where the row starts. 131 const char* end; // Pointer to the input text where the row ends (one past the last character). 132 const char* next; // Pointer to the beginning of the next row. 133 float width; // Logical width of the row. 134 float minx, maxx; // Actual bounds of the row. Logical with and bounds can differ because of kerning and some parts over extending. 135 }; 136 typedef struct NVGtextRow NVGtextRow; 137 138 enum NVGimageFlags { 139 NVG_IMAGE_GENERATE_MIPMAPS = 1<<0, // Generate mipmaps during creation of the image. 140 NVG_IMAGE_REPEATX = 1<<1, // Repeat image in X direction. 141 NVG_IMAGE_REPEATY = 1<<2, // Repeat image in Y direction. 142 NVG_IMAGE_FLIPY = 1<<3, // Flips (inverses) image in Y direction when rendered. 143 NVG_IMAGE_PREMULTIPLIED = 1<<4, // Image data has premultiplied alpha. 144 NVG_IMAGE_NEAREST = 1<<5, // Image interpolation is Nearest instead Linear 145 }; 146 147 // Begin drawing a new frame 148 // Calls to nanovg drawing API should be wrapped in nvgBeginFrame() & nvgEndFrame() 149 // nvgBeginFrame() defines the size of the window to render to in relation currently 150 // set viewport (i.e. glViewport on GL backends). Device pixel ration allows to 151 // control the rendering on Hi-DPI devices. 152 // For example, GLFW returns two dimension for an opened window: window size and 153 // frame buffer size. In that case you would set windowWidth/Height to the window size 154 // devicePixelRatio to: frameBufferWidth / windowWidth. 155 void nvgBeginFrame(NVGcontext* ctx, float windowWidth, float windowHeight, float devicePixelRatio); 156 157 // Cancels drawing the current frame. 158 void nvgCancelFrame(NVGcontext* ctx); 159 160 // Ends drawing flushing remaining render state. 161 void nvgEndFrame(NVGcontext* ctx); 162 163 // 164 // Composite operation 165 // 166 // The composite operations in NanoVG are modeled after HTML Canvas API, and 167 // the blend func is based on OpenGL (see corresponding manuals for more info). 168 // The colors in the blending state have premultiplied alpha. 169 170 // Sets the composite operation. The op parameter should be one of NVGcompositeOperation. 171 void nvgGlobalCompositeOperation(NVGcontext* ctx, int op); 172 173 // Sets the composite operation with custom pixel arithmetic. The parameters should be one of NVGblendFactor. 174 void nvgGlobalCompositeBlendFunc(NVGcontext* ctx, int sfactor, int dfactor); 175 176 // Sets the composite operation with custom pixel arithmetic for RGB and alpha components separately. The parameters should be one of NVGblendFactor. 177 void nvgGlobalCompositeBlendFuncSeparate(NVGcontext* ctx, int srcRGB, int dstRGB, int srcAlpha, int dstAlpha); 178 179 // 180 // Color utils 181 // 182 // Colors in NanoVG are stored as unsigned ints in ABGR format. 183 184 // Returns a color value from red, green, blue values. Alpha will be set to 255 (1.0f). 185 NVGcolor nvgRGB(unsigned char r, unsigned char g, unsigned char b); 186 187 // Returns a color value from red, green, blue values. Alpha will be set to 1.0f. 188 NVGcolor nvgRGBf(float r, float g, float b); 189 190 191 // Returns a color value from red, green, blue and alpha values. 192 NVGcolor nvgRGBA(unsigned char r, unsigned char g, unsigned char b, unsigned char a); 193 194 // Returns a color value from red, green, blue and alpha values. 195 NVGcolor nvgRGBAf(float r, float g, float b, float a); 196 197 198 // Linearly interpolates from color c0 to c1, and returns resulting color value. 199 NVGcolor nvgLerpRGBA(NVGcolor c0, NVGcolor c1, float u); 200 201 // Sets transparency of a color value. 202 NVGcolor nvgTransRGBA(NVGcolor c0, unsigned char a); 203 204 // Sets transparency of a color value. 205 NVGcolor nvgTransRGBAf(NVGcolor c0, float a); 206 207 // Returns color value specified by hue, saturation and lightness. 208 // HSL values are all in range [0..1], alpha will be set to 255. 209 NVGcolor nvgHSL(float h, float s, float l); 210 211 // Returns color value specified by hue, saturation and lightness and alpha. 212 // HSL values are all in range [0..1], alpha in range [0..255] 213 NVGcolor nvgHSLA(float h, float s, float l, unsigned char a); 214 215 // 216 // State Handling 217 // 218 // NanoVG contains state which represents how paths will be rendered. 219 // The state contains transform, fill and stroke styles, text and font styles, 220 // and scissor clipping. 221 222 // Pushes and saves the current render state into a state stack. 223 // A matching nvgRestore() must be used to restore the state. 224 void nvgSave(NVGcontext* ctx); 225 226 // Pops and restores current render state. 227 void nvgRestore(NVGcontext* ctx); 228 229 // Resets current render state to default values. Does not affect the render state stack. 230 void nvgReset(NVGcontext* ctx); 231 232 // 233 // Render styles 234 // 235 // Fill and stroke render style can be either a solid color or a paint which is a gradient or a pattern. 236 // Solid color is simply defined as a color value, different kinds of paints can be created 237 // using nvgLinearGradient(), nvgBoxGradient(), nvgRadialGradient() and nvgImagePattern(). 238 // 239 // Current render style can be saved and restored using nvgSave() and nvgRestore(). 240 241 // Sets whether to draw antialias for nvgStroke() and nvgFill(). It's enabled by default. 242 void nvgShapeAntiAlias(NVGcontext* ctx, int enabled); 243 244 // Sets current stroke style to a solid color. 245 void nvgStrokeColor(NVGcontext* ctx, NVGcolor color); 246 247 // Sets current stroke style to a paint, which can be a one of the gradients or a pattern. 248 void nvgStrokePaint(NVGcontext* ctx, NVGpaint paint); 249 250 // Sets current fill style to a solid color. 251 void nvgFillColor(NVGcontext* ctx, NVGcolor color); 252 253 // Sets current fill style to a paint, which can be a one of the gradients or a pattern. 254 void nvgFillPaint(NVGcontext* ctx, NVGpaint paint); 255 256 // Sets the miter limit of the stroke style. 257 // Miter limit controls when a sharp corner is beveled. 258 void nvgMiterLimit(NVGcontext* ctx, float limit); 259 260 // Sets the stroke width of the stroke style. 261 void nvgStrokeWidth(NVGcontext* ctx, float size); 262 263 // Sets how the end of the line (cap) is drawn, 264 // Can be one of: NVG_BUTT (default), NVG_ROUND, NVG_SQUARE. 265 void nvgLineCap(NVGcontext* ctx, int cap); 266 267 // Sets how sharp path corners are drawn. 268 // Can be one of NVG_MITER (default), NVG_ROUND, NVG_BEVEL. 269 void nvgLineJoin(NVGcontext* ctx, int join); 270 271 // Sets the transparency applied to all rendered shapes. 272 // Already transparent paths will get proportionally more transparent as well. 273 void nvgGlobalAlpha(NVGcontext* ctx, float alpha); 274 275 // 276 // Transforms 277 // 278 // The paths, gradients, patterns and scissor region are transformed by an transformation 279 // matrix at the time when they are passed to the API. 280 // The current transformation matrix is a affine matrix: 281 // [sx kx tx] 282 // [ky sy ty] 283 // [ 0 0 1] 284 // Where: sx,sy define scaling, kx,ky skewing, and tx,ty translation. 285 // The last row is assumed to be 0,0,1 and is not stored. 286 // 287 // Apart from nvgResetTransform(), each transformation function first creates 288 // specific transformation matrix and pre-multiplies the current transformation by it. 289 // 290 // Current coordinate system (transformation) can be saved and restored using nvgSave() and nvgRestore(). 291 292 // Resets current transform to a identity matrix. 293 void nvgResetTransform(NVGcontext* ctx); 294 295 // Premultiplies current coordinate system by specified matrix. 296 // The parameters are interpreted as matrix as follows: 297 // [a c e] 298 // [b d f] 299 // [0 0 1] 300 void nvgTransform(NVGcontext* ctx, float a, float b, float c, float d, float e, float f); 301 302 // Translates current coordinate system. 303 void nvgTranslate(NVGcontext* ctx, float x, float y); 304 305 // Rotates current coordinate system. Angle is specified in radians. 306 void nvgRotate(NVGcontext* ctx, float angle); 307 308 // Skews the current coordinate system along X axis. Angle is specified in radians. 309 void nvgSkewX(NVGcontext* ctx, float angle); 310 311 // Skews the current coordinate system along Y axis. Angle is specified in radians. 312 void nvgSkewY(NVGcontext* ctx, float angle); 313 314 // Scales the current coordinate system. 315 void nvgScale(NVGcontext* ctx, float x, float y); 316 317 // Stores the top part (a-f) of the current transformation matrix in to the specified buffer. 318 // [a c e] 319 // [b d f] 320 // [0 0 1] 321 // There should be space for 6 floats in the return buffer for the values a-f. 322 void nvgCurrentTransform(NVGcontext* ctx, float* xform); 323 324 325 // The following functions can be used to make calculations on 2x3 transformation matrices. 326 // A 2x3 matrix is represented as float[6]. 327 328 // Sets the transform to identity matrix. 329 void nvgTransformIdentity(float* dst); 330 331 // Sets the transform to translation matrix matrix. 332 void nvgTransformTranslate(float* dst, float tx, float ty); 333 334 // Sets the transform to scale matrix. 335 void nvgTransformScale(float* dst, float sx, float sy); 336 337 // Sets the transform to rotate matrix. Angle is specified in radians. 338 void nvgTransformRotate(float* dst, float a); 339 340 // Sets the transform to skew-x matrix. Angle is specified in radians. 341 void nvgTransformSkewX(float* dst, float a); 342 343 // Sets the transform to skew-y matrix. Angle is specified in radians. 344 void nvgTransformSkewY(float* dst, float a); 345 346 // Sets the transform to the result of multiplication of two transforms, of A = A*B. 347 void nvgTransformMultiply(float* dst, const float* src); 348 349 // Sets the transform to the result of multiplication of two transforms, of A = B*A. 350 void nvgTransformPremultiply(float* dst, const float* src); 351 352 // Sets the destination to inverse of specified transform. 353 // Returns 1 if the inverse could be calculated, else 0. 354 int nvgTransformInverse(float* dst, const float* src); 355 356 // Transform a point by given transform. 357 void nvgTransformPoint(float* dstx, float* dsty, const float* xform, float srcx, float srcy); 358 359 // Converts degrees to radians and vice versa. 360 float nvgDegToRad(float deg); 361 float nvgRadToDeg(float rad); 362 363 // 364 // Images 365 // 366 // NanoVG allows you to load jpg, png, psd, tga, pic and gif files to be used for rendering. 367 // In addition you can upload your own image. The image loading is provided by stb_image. 368 // The parameter imageFlags is combination of flags defined in NVGimageFlags. 369 370 // Creates image by loading it from the disk from specified file name. 371 // Returns handle to the image. 372 int nvgCreateImage(NVGcontext* ctx, const char* filename, int imageFlags); 373 374 // Creates image by loading it from the specified chunk of memory. 375 // Returns handle to the image. 376 int nvgCreateImageMem(NVGcontext* ctx, int imageFlags, unsigned char* data, int ndata); 377 378 // Creates image from specified image data. 379 // Returns handle to the image. 380 int nvgCreateImageRGBA(NVGcontext* ctx, int w, int h, int imageFlags, const unsigned char* data); 381 382 // Updates image data specified by image handle. 383 void nvgUpdateImage(NVGcontext* ctx, int image, const unsigned char* data); 384 385 // Returns the dimensions of a created image. 386 void nvgImageSize(NVGcontext* ctx, int image, int* w, int* h); 387 388 // Deletes created image. 389 void nvgDeleteImage(NVGcontext* ctx, int image); 390 391 // 392 // Paints 393 // 394 // NanoVG supports four types of paints: linear gradient, box gradient, radial gradient and image pattern. 395 // These can be used as paints for strokes and fills. 396 397 // Creates and returns a linear gradient. Parameters (sx,sy)-(ex,ey) specify the start and end coordinates 398 // of the linear gradient, icol specifies the start color and ocol the end color. 399 // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint(). 400 NVGpaint nvgLinearGradient(NVGcontext* ctx, float sx, float sy, float ex, float ey, 401 NVGcolor icol, NVGcolor ocol); 402 403 // Creates and returns a box gradient. Box gradient is a feathered rounded rectangle, it is useful for rendering 404 // drop shadows or highlights for boxes. Parameters (x,y) define the top-left corner of the rectangle, 405 // (w,h) define the size of the rectangle, r defines the corner radius, and f feather. Feather defines how blurry 406 // the border of the rectangle is. Parameter icol specifies the inner color and ocol the outer color of the gradient. 407 // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint(). 408 NVGpaint nvgBoxGradient(NVGcontext* ctx, float x, float y, float w, float h, 409 float r, float f, NVGcolor icol, NVGcolor ocol); 410 411 // Creates and returns a radial gradient. Parameters (cx,cy) specify the center, inr and outr specify 412 // the inner and outer radius of the gradient, icol specifies the start color and ocol the end color. 413 // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint(). 414 NVGpaint nvgRadialGradient(NVGcontext* ctx, float cx, float cy, float inr, float outr, 415 NVGcolor icol, NVGcolor ocol); 416 417 // Creates and returns an image patter. Parameters (ox,oy) specify the left-top location of the image pattern, 418 // (ex,ey) the size of one image, angle rotation around the top-left corner, image is handle to the image to render. 419 // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint(). 420 NVGpaint nvgImagePattern(NVGcontext* ctx, float ox, float oy, float ex, float ey, 421 float angle, int image, float alpha); 422 423 // 424 // Scissoring 425 // 426 // Scissoring allows you to clip the rendering into a rectangle. This is useful for various 427 // user interface cases like rendering a text edit or a timeline. 428 429 // Sets the current scissor rectangle. 430 // The scissor rectangle is transformed by the current transform. 431 void nvgScissor(NVGcontext* ctx, float x, float y, float w, float h); 432 433 // Intersects current scissor rectangle with the specified rectangle. 434 // The scissor rectangle is transformed by the current transform. 435 // Note: in case the rotation of previous scissor rect differs from 436 // the current one, the intersection will be done between the specified 437 // rectangle and the previous scissor rectangle transformed in the current 438 // transform space. The resulting shape is always rectangle. 439 void nvgIntersectScissor(NVGcontext* ctx, float x, float y, float w, float h); 440 441 // Reset and disables scissoring. 442 void nvgResetScissor(NVGcontext* ctx); 443 444 // 445 // Paths 446 // 447 // Drawing a new shape starts with nvgBeginPath(), it clears all the currently defined paths. 448 // Then you define one or more paths and sub-paths which describe the shape. The are functions 449 // to draw common shapes like rectangles and circles, and lower level step-by-step functions, 450 // which allow to define a path curve by curve. 451 // 452 // NanoVG uses even-odd fill rule to draw the shapes. Solid shapes should have counter clockwise 453 // winding and holes should have counter clockwise order. To specify winding of a path you can 454 // call nvgPathWinding(). This is useful especially for the common shapes, which are drawn CCW. 455 // 456 // Finally you can fill the path using current fill style by calling nvgFill(), and stroke it 457 // with current stroke style by calling nvgStroke(). 458 // 459 // The curve segments and sub-paths are transformed by the current transform. 460 461 // Clears the current path and sub-paths. 462 void nvgBeginPath(NVGcontext* ctx); 463 464 // Starts new sub-path with specified point as first point. 465 void nvgMoveTo(NVGcontext* ctx, float x, float y); 466 467 // Adds line segment from the last point in the path to the specified point. 468 void nvgLineTo(NVGcontext* ctx, float x, float y); 469 470 // Adds cubic bezier segment from last point in the path via two control points to the specified point. 471 void nvgBezierTo(NVGcontext* ctx, float c1x, float c1y, float c2x, float c2y, float x, float y); 472 473 // Adds quadratic bezier segment from last point in the path via a control point to the specified point. 474 void nvgQuadTo(NVGcontext* ctx, float cx, float cy, float x, float y); 475 476 // Adds an arc segment at the corner defined by the last path point, and two specified points. 477 void nvgArcTo(NVGcontext* ctx, float x1, float y1, float x2, float y2, float radius); 478 479 // Closes current sub-path with a line segment. 480 void nvgClosePath(NVGcontext* ctx); 481 482 // Sets the current sub-path winding, see NVGwinding and NVGsolidity. 483 void nvgPathWinding(NVGcontext* ctx, int dir); 484 485 // Creates new circle arc shaped sub-path. The arc center is at cx,cy, the arc radius is r, 486 // and the arc is drawn from angle a0 to a1, and swept in direction dir (NVG_CCW, or NVG_CW). 487 // Angles are specified in radians. 488 void nvgArc(NVGcontext* ctx, float cx, float cy, float r, float a0, float a1, int dir); 489 490 // Creates new rectangle shaped sub-path. 491 void nvgRect(NVGcontext* ctx, float x, float y, float w, float h); 492 493 // Creates new rounded rectangle shaped sub-path. 494 void nvgRoundedRect(NVGcontext* ctx, float x, float y, float w, float h, float r); 495 496 // Creates new rounded rectangle shaped sub-path with varying radii for each corner. 497 void nvgRoundedRectVarying(NVGcontext* ctx, float x, float y, float w, float h, float radTopLeft, float radTopRight, float radBottomRight, float radBottomLeft); 498 499 // Creates new ellipse shaped sub-path. 500 void nvgEllipse(NVGcontext* ctx, float cx, float cy, float rx, float ry); 501 502 // Creates new circle shaped sub-path. 503 void nvgCircle(NVGcontext* ctx, float cx, float cy, float r); 504 505 // Fills the current path with current fill style. 506 void nvgFill(NVGcontext* ctx); 507 508 // Fills the current path with current stroke style. 509 void nvgStroke(NVGcontext* ctx); 510 511 512 // 513 // Text 514 // 515 // NanoVG allows you to load .ttf files and use the font to render text. 516 // 517 // The appearance of the text can be defined by setting the current text style 518 // and by specifying the fill color. Common text and font settings such as 519 // font size, letter spacing and text align are supported. Font blur allows you 520 // to create simple text effects such as drop shadows. 521 // 522 // At render time the font face can be set based on the font handles or name. 523 // 524 // Font measure functions return values in local space, the calculations are 525 // carried in the same resolution as the final rendering. This is done because 526 // the text glyph positions are snapped to the nearest pixels sharp rendering. 527 // 528 // The local space means that values are not rotated or scale as per the current 529 // transformation. For example if you set font size to 12, which would mean that 530 // line height is 16, then regardless of the current scaling and rotation, the 531 // returned line height is always 16. Some measures may vary because of the scaling 532 // since aforementioned pixel snapping. 533 // 534 // While this may sound a little odd, the setup allows you to always render the 535 // same way regardless of scaling. I.e. following works regardless of scaling: 536 // 537 // const char* txt = "Text me up."; 538 // nvgTextBounds(vg, x,y, txt, NULL, bounds); 539 // nvgBeginPath(vg); 540 // nvgRoundedRect(vg, bounds[0],bounds[1], bounds[2]-bounds[0], bounds[3]-bounds[1]); 541 // nvgFill(vg); 542 // 543 // Note: currently only solid color fill is supported for text. 544 545 // Creates font by loading it from the disk from specified file name. 546 // Returns handle to the font. 547 int nvgCreateFont(NVGcontext* ctx, const char* name, const char* filename); 548 549 // Creates font by loading it from the specified memory chunk. 550 // Returns handle to the font. 551 int nvgCreateFontMem(NVGcontext* ctx, const char* name, unsigned char* data, int ndata, int freeData); 552 553 // Finds a loaded font of specified name, and returns handle to it, or -1 if the font is not found. 554 int nvgFindFont(NVGcontext* ctx, const char* name); 555 556 // Adds a fallback font by handle. 557 int nvgAddFallbackFontId(NVGcontext* ctx, int baseFont, int fallbackFont); 558 559 // Adds a fallback font by name. 560 int nvgAddFallbackFont(NVGcontext* ctx, const char* baseFont, const char* fallbackFont); 561 562 // Sets the font size of current text style. 563 void nvgFontSize(NVGcontext* ctx, float size); 564 565 // Sets the blur of current text style. 566 void nvgFontBlur(NVGcontext* ctx, float blur); 567 568 // Sets the letter spacing of current text style. 569 void nvgTextLetterSpacing(NVGcontext* ctx, float spacing); 570 571 // Sets the proportional line height of current text style. The line height is specified as multiple of font size. 572 void nvgTextLineHeight(NVGcontext* ctx, float lineHeight); 573 574 // Sets the text align of current text style, see NVGalign for options. 575 void nvgTextAlign(NVGcontext* ctx, int align); 576 577 // Sets the font face based on specified id of current text style. 578 void nvgFontFaceId(NVGcontext* ctx, int font); 579 580 // Sets the font face based on specified name of current text style. 581 void nvgFontFace(NVGcontext* ctx, const char* font); 582 583 // Draws text string at specified location. If end is specified only the sub-string up to the end is drawn. 584 float nvgText(NVGcontext* ctx, float x, float y, const char* string, const char* end); 585 586 // Draws multi-line text string at specified location wrapped at the specified width. If end is specified only the sub-string up to the end is drawn. 587 // White space is stripped at the beginning of the rows, the text is split at word boundaries or when new-line characters are encountered. 588 // Words longer than the max width are slit at nearest character (i.e. no hyphenation). 589 void nvgTextBox(NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end); 590 591 // Measures the specified text string. Parameter bounds should be a pointer to float[4], 592 // if the bounding box of the text should be returned. The bounds value are [xmin,ymin, xmax,ymax] 593 // Returns the horizontal advance of the measured text (i.e. where the next character should drawn). 594 // Measured values are returned in local coordinate space. 595 float nvgTextBounds(NVGcontext* ctx, float x, float y, const char* string, const char* end, float* bounds); 596 597 // Measures the specified multi-text string. Parameter bounds should be a pointer to float[4], 598 // if the bounding box of the text should be returned. The bounds value are [xmin,ymin, xmax,ymax] 599 // Measured values are returned in local coordinate space. 600 void nvgTextBoxBounds(NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end, float* bounds); 601 602 // Calculates the glyph x positions of the specified text. If end is specified only the sub-string will be used. 603 // Measured values are returned in local coordinate space. 604 int nvgTextGlyphPositions(NVGcontext* ctx, float x, float y, const char* string, const char* end, NVGglyphPosition* positions, int maxPositions); 605 606 // Returns the vertical metrics based on the current text style. 607 // Measured values are returned in local coordinate space. 608 void nvgTextMetrics(NVGcontext* ctx, float* ascender, float* descender, float* lineh); 609 610 // Breaks the specified text into lines. If end is specified only the sub-string will be used. 611 // White space is stripped at the beginning of the rows, the text is split at word boundaries or when new-line characters are encountered. 612 // Words longer than the max width are slit at nearest character (i.e. no hyphenation). 613 int nvgTextBreakLines(NVGcontext* ctx, const char* string, const char* end, float breakRowWidth, NVGtextRow* rows, int maxRows); 614 615 // 616 // Internal Render API 617 // 618 enum NVGtexture { 619 NVG_TEXTURE_ALPHA = 0x01, 620 NVG_TEXTURE_RGBA = 0x02, 621 }; 622 623 struct NVGscissor { 624 float xform[6]; 625 float extent[2]; 626 }; 627 typedef struct NVGscissor NVGscissor; 628 629 struct NVGvertex { 630 float x,y,u,v; 631 }; 632 typedef struct NVGvertex NVGvertex; 633 634 struct NVGpath { 635 int first; 636 int count; 637 unsigned char closed; 638 int nbevel; 639 NVGvertex* fill; 640 int nfill; 641 NVGvertex* stroke; 642 int nstroke; 643 int winding; 644 int convex; 645 }; 646 typedef struct NVGpath NVGpath; 647 648 struct NVGparams { 649 void* userPtr; 650 int edgeAntiAlias; 651 int (*renderCreate)(void* uptr); 652 int (*renderCreateTexture)(void* uptr, int type, int w, int h, int imageFlags, const unsigned char* data); 653 int (*renderDeleteTexture)(void* uptr, int image); 654 int (*renderUpdateTexture)(void* uptr, int image, int x, int y, int w, int h, const unsigned char* data); 655 int (*renderGetTextureSize)(void* uptr, int image, int* w, int* h); 656 void (*renderViewport)(void* uptr, float width, float height, float devicePixelRatio); 657 void (*renderCancel)(void* uptr); 658 void (*renderFlush)(void* uptr); 659 void (*renderFill)(void* uptr, NVGpaint* paint, NVGcompositeOperationState compositeOperation, NVGscissor* scissor, float fringe, const float* bounds, const NVGpath* paths, int npaths); 660 void (*renderStroke)(void* uptr, NVGpaint* paint, NVGcompositeOperationState compositeOperation, NVGscissor* scissor, float fringe, float strokeWidth, const NVGpath* paths, int npaths); 661 void (*renderTriangles)(void* uptr, NVGpaint* paint, NVGcompositeOperationState compositeOperation, NVGscissor* scissor, const NVGvertex* verts, int nverts); 662 void (*renderDelete)(void* uptr); 663 }; 664 typedef struct NVGparams NVGparams; 665 666 // Constructor and destructor, called by the render back-end. 667 NVGcontext* nvgCreateInternal(NVGparams* params); 668 void nvgDeleteInternal(NVGcontext* ctx); 669 670 NVGparams* nvgInternalParams(NVGcontext* ctx); 671 672 // Debug function to dump cached path data. 673 void nvgDebugDumpPathCache(NVGcontext* ctx); 674 675 #ifdef _MSC_VER 676 #pragma warning(pop) 677 #endif 678 679 #define NVG_NOTUSED(v) for (;;) { (void)(1 ? (void)0 : ( (void)(v) ) ); break; } 680 681 #ifdef __cplusplus 682 } 683 #endif 684 685 #endif // NANOVG_H