mdb.c (293055B)
1 /** @file mdb.c 2 * @brief Lightning memory-mapped database library 3 * 4 * A Btree-based database management library modeled loosely on the 5 * BerkeleyDB API, but much simplified. 6 */ 7 /* 8 * Copyright 2011-2021 Howard Chu, Symas Corp. 9 * All rights reserved. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted only as authorized by the OpenLDAP 13 * Public License. 14 * 15 * A copy of this license is available in the file LICENSE in the 16 * top-level directory of the distribution or, alternatively, at 17 * <http://www.OpenLDAP.org/license.html>. 18 * 19 * This code is derived from btree.c written by Martin Hedenfalk. 20 * 21 * Copyright (c) 2009, 2010 Martin Hedenfalk <martin@bzero.se> 22 * 23 * Permission to use, copy, modify, and distribute this software for any 24 * purpose with or without fee is hereby granted, provided that the above 25 * copyright notice and this permission notice appear in all copies. 26 * 27 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 28 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 29 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 30 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 31 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 32 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 33 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 34 */ 35 #ifndef _GNU_SOURCE 36 #define _GNU_SOURCE 1 37 #endif 38 #if defined(__WIN64__) 39 #define _FILE_OFFSET_BITS 64 40 #endif 41 #ifdef _WIN32 42 #include <malloc.h> 43 #include <windows.h> 44 #include <wchar.h> /* get wcscpy() */ 45 46 /** getpid() returns int; MinGW defines pid_t but MinGW64 typedefs it 47 * as int64 which is wrong. MSVC doesn't define it at all, so just 48 * don't use it. 49 */ 50 #define MDB_PID_T int 51 #define MDB_THR_T DWORD 52 #include <sys/types.h> 53 #include <sys/stat.h> 54 #ifdef __GNUC__ 55 # include <sys/param.h> 56 #else 57 # define LITTLE_ENDIAN 1234 58 # define BIG_ENDIAN 4321 59 # define BYTE_ORDER LITTLE_ENDIAN 60 # ifndef SSIZE_MAX 61 # define SSIZE_MAX INT_MAX 62 # endif 63 #endif 64 #else 65 #include <sys/types.h> 66 #include <sys/stat.h> 67 #define MDB_PID_T pid_t 68 #define MDB_THR_T pthread_t 69 #include <sys/param.h> 70 #include <sys/uio.h> 71 #include <sys/mman.h> 72 #ifdef HAVE_SYS_FILE_H 73 #include <sys/file.h> 74 #endif 75 #include <fcntl.h> 76 #endif 77 78 #if defined(__mips) && defined(__linux) 79 /* MIPS has cache coherency issues, requires explicit cache control */ 80 #include <sys/cachectl.h> 81 #define CACHEFLUSH(addr, bytes, cache) cacheflush(addr, bytes, cache) 82 #else 83 #define CACHEFLUSH(addr, bytes, cache) 84 #endif 85 86 #if defined(__linux) && !defined(MDB_FDATASYNC_WORKS) 87 /** fdatasync is broken on ext3/ext4fs on older kernels, see 88 * description in #mdb_env_open2 comments. You can safely 89 * define MDB_FDATASYNC_WORKS if this code will only be run 90 * on kernels 3.6 and newer. 91 */ 92 #define BROKEN_FDATASYNC 93 #endif 94 95 #include <errno.h> 96 #include <limits.h> 97 #include <stddef.h> 98 #include <inttypes.h> 99 #include <stdio.h> 100 #include <stdlib.h> 101 #include <string.h> 102 #include <time.h> 103 104 #ifdef _MSC_VER 105 #include <io.h> 106 typedef SSIZE_T ssize_t; 107 #else 108 #include <unistd.h> 109 #endif 110 111 #if defined(__sun) || defined(ANDROID) 112 /* Most platforms have posix_memalign, older may only have memalign */ 113 #define HAVE_MEMALIGN 1 114 #include <malloc.h> 115 /* On Solaris, we need the POSIX sigwait function */ 116 #if defined (__sun) 117 # define _POSIX_PTHREAD_SEMANTICS 1 118 #endif 119 #endif 120 121 #if !(defined(BYTE_ORDER) || defined(__BYTE_ORDER)) 122 #include <netinet/in.h> 123 #include <resolv.h> /* defines BYTE_ORDER on HPUX and Solaris */ 124 #endif 125 126 #if defined(__FreeBSD__) && defined(__FreeBSD_version) && __FreeBSD_version >= 1100110 127 # define MDB_USE_POSIX_MUTEX 1 128 # define MDB_USE_ROBUST 1 129 #elif defined(__APPLE__) || defined (BSD) || defined(__FreeBSD_kernel__) 130 # define MDB_USE_POSIX_SEM 1 131 # define MDB_FDATASYNC fsync 132 #elif defined(ANDROID) 133 # define MDB_FDATASYNC fsync 134 #endif 135 136 #ifndef _WIN32 137 #include <pthread.h> 138 #include <signal.h> 139 #ifdef MDB_USE_POSIX_SEM 140 # define MDB_USE_HASH 1 141 #include <semaphore.h> 142 #else 143 #define MDB_USE_POSIX_MUTEX 1 144 #endif 145 #endif 146 147 #if defined(_WIN32) + defined(MDB_USE_POSIX_SEM) \ 148 + defined(MDB_USE_POSIX_MUTEX) != 1 149 # error "Ambiguous shared-lock implementation" 150 #endif 151 152 #ifdef USE_VALGRIND 153 #include <valgrind/memcheck.h> 154 #define VGMEMP_CREATE(h,r,z) VALGRIND_CREATE_MEMPOOL(h,r,z) 155 #define VGMEMP_ALLOC(h,a,s) VALGRIND_MEMPOOL_ALLOC(h,a,s) 156 #define VGMEMP_FREE(h,a) VALGRIND_MEMPOOL_FREE(h,a) 157 #define VGMEMP_DESTROY(h) VALGRIND_DESTROY_MEMPOOL(h) 158 #define VGMEMP_DEFINED(a,s) VALGRIND_MAKE_MEM_DEFINED(a,s) 159 #else 160 #define VGMEMP_CREATE(h,r,z) 161 #define VGMEMP_ALLOC(h,a,s) 162 #define VGMEMP_FREE(h,a) 163 #define VGMEMP_DESTROY(h) 164 #define VGMEMP_DEFINED(a,s) 165 #endif 166 167 #ifndef BYTE_ORDER 168 # if (defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)) && !(defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN)) 169 /* Solaris just defines one or the other */ 170 # define LITTLE_ENDIAN 1234 171 # define BIG_ENDIAN 4321 172 # ifdef _LITTLE_ENDIAN 173 # define BYTE_ORDER LITTLE_ENDIAN 174 # else 175 # define BYTE_ORDER BIG_ENDIAN 176 # endif 177 # else 178 # define BYTE_ORDER __BYTE_ORDER 179 # endif 180 #endif 181 182 #ifndef LITTLE_ENDIAN 183 #define LITTLE_ENDIAN __LITTLE_ENDIAN 184 #endif 185 #ifndef BIG_ENDIAN 186 #define BIG_ENDIAN __BIG_ENDIAN 187 #endif 188 189 #if defined(__i386) || defined(__x86_64) || defined(_M_IX86) 190 #define MISALIGNED_OK 1 191 #endif 192 193 #include "lmdb.h" 194 #include "midl.h" 195 196 #if (BYTE_ORDER == LITTLE_ENDIAN) == (BYTE_ORDER == BIG_ENDIAN) 197 # error "Unknown or unsupported endianness (BYTE_ORDER)" 198 #elif (-6 & 5) || CHAR_BIT != 8 || UINT_MAX < 0xffffffff || ULONG_MAX % 0xFFFF 199 # error "Two's complement, reasonably sized integer types, please" 200 #endif 201 202 #if (((__clang_major__ << 8) | __clang_minor__) >= 0x0302) || (((__GNUC__ << 8) | __GNUC_MINOR__) >= 0x0403) 203 /** Mark infrequently used env functions as cold. This puts them in a separate 204 * section, and optimizes them for size */ 205 #define ESECT __attribute__ ((cold)) 206 #else 207 /* On older compilers, use a separate section */ 208 # ifdef __GNUC__ 209 # ifdef __APPLE__ 210 # define ESECT __attribute__ ((section("__TEXT,text_env"))) 211 # else 212 # define ESECT __attribute__ ((section("text_env"))) 213 # endif 214 # else 215 # define ESECT 216 # endif 217 #endif 218 219 #ifdef _WIN32 220 #define CALL_CONV WINAPI 221 #else 222 #define CALL_CONV 223 #endif 224 225 /** @defgroup internal LMDB Internals 226 * @{ 227 */ 228 /** @defgroup compat Compatibility Macros 229 * A bunch of macros to minimize the amount of platform-specific ifdefs 230 * needed throughout the rest of the code. When the features this library 231 * needs are similar enough to POSIX to be hidden in a one-or-two line 232 * replacement, this macro approach is used. 233 * @{ 234 */ 235 236 /** Features under development */ 237 #ifndef MDB_DEVEL 238 #define MDB_DEVEL 0 239 #endif 240 241 /** Wrapper around __func__, which is a C99 feature */ 242 #if __STDC_VERSION__ >= 199901L 243 # define mdb_func_ __func__ 244 #elif __GNUC__ >= 2 || _MSC_VER >= 1300 245 # define mdb_func_ __FUNCTION__ 246 #else 247 /* If a debug message says <mdb_unknown>(), update the #if statements above */ 248 # define mdb_func_ "<mdb_unknown>" 249 #endif 250 251 /* Internal error codes, not exposed outside liblmdb */ 252 #define MDB_NO_ROOT (MDB_LAST_ERRCODE + 10) 253 #ifdef _WIN32 254 #define MDB_OWNERDEAD ((int) WAIT_ABANDONED) 255 #elif defined(MDB_USE_POSIX_MUTEX) && defined(EOWNERDEAD) 256 #define MDB_OWNERDEAD EOWNERDEAD /**< #LOCK_MUTEX0() result if dead owner */ 257 #endif 258 259 #ifdef __GLIBC__ 260 #define GLIBC_VER ((__GLIBC__ << 16 )| __GLIBC_MINOR__) 261 #endif 262 /** Some platforms define the EOWNERDEAD error code 263 * even though they don't support Robust Mutexes. 264 * Compile with -DMDB_USE_ROBUST=0, or use some other 265 * mechanism like -DMDB_USE_POSIX_SEM instead of 266 * -DMDB_USE_POSIX_MUTEX. 267 * (Posix semaphores are not robust.) 268 */ 269 #ifndef MDB_USE_ROBUST 270 /* Android currently lacks Robust Mutex support. So does glibc < 2.4. */ 271 # if defined(MDB_USE_POSIX_MUTEX) && (defined(ANDROID) || \ 272 (defined(__GLIBC__) && GLIBC_VER < 0x020004)) 273 # define MDB_USE_ROBUST 0 274 # else 275 # define MDB_USE_ROBUST 1 276 # endif 277 #endif /* !MDB_USE_ROBUST */ 278 279 #if defined(MDB_USE_POSIX_MUTEX) && (MDB_USE_ROBUST) 280 /* glibc < 2.12 only provided _np API */ 281 # if (defined(__GLIBC__) && GLIBC_VER < 0x02000c) || \ 282 (defined(PTHREAD_MUTEX_ROBUST_NP) && !defined(PTHREAD_MUTEX_ROBUST)) 283 # define PTHREAD_MUTEX_ROBUST PTHREAD_MUTEX_ROBUST_NP 284 # define pthread_mutexattr_setrobust(attr, flag) pthread_mutexattr_setrobust_np(attr, flag) 285 # define pthread_mutex_consistent(mutex) pthread_mutex_consistent_np(mutex) 286 # endif 287 #endif /* MDB_USE_POSIX_MUTEX && MDB_USE_ROBUST */ 288 289 #if defined(MDB_OWNERDEAD) && (MDB_USE_ROBUST) 290 #define MDB_ROBUST_SUPPORTED 1 291 #endif 292 293 #ifdef _WIN32 294 #define MDB_USE_HASH 1 295 #define MDB_PIDLOCK 0 296 #define THREAD_RET DWORD 297 #define pthread_t HANDLE 298 #define pthread_mutex_t HANDLE 299 #define pthread_cond_t HANDLE 300 typedef HANDLE mdb_mutex_t, mdb_mutexref_t; 301 #define pthread_key_t DWORD 302 #define pthread_self() GetCurrentThreadId() 303 #define pthread_key_create(x,y) \ 304 ((*(x) = TlsAlloc()) == TLS_OUT_OF_INDEXES ? ErrCode() : 0) 305 #define pthread_key_delete(x) TlsFree(x) 306 #define pthread_getspecific(x) TlsGetValue(x) 307 #define pthread_setspecific(x,y) (TlsSetValue(x,y) ? 0 : ErrCode()) 308 #define pthread_mutex_unlock(x) ReleaseMutex(*x) 309 #define pthread_mutex_lock(x) WaitForSingleObject(*x, INFINITE) 310 #define pthread_cond_signal(x) SetEvent(*x) 311 #define pthread_cond_wait(cond,mutex) do{SignalObjectAndWait(*mutex, *cond, INFINITE, FALSE); WaitForSingleObject(*mutex, INFINITE);}while(0) 312 #define THREAD_CREATE(thr,start,arg) \ 313 (((thr) = CreateThread(NULL, 0, start, arg, 0, NULL)) ? 0 : ErrCode()) 314 #define THREAD_FINISH(thr) \ 315 (WaitForSingleObject(thr, INFINITE) ? ErrCode() : 0) 316 #define LOCK_MUTEX0(mutex) WaitForSingleObject(mutex, INFINITE) 317 #define UNLOCK_MUTEX(mutex) ReleaseMutex(mutex) 318 #define mdb_mutex_consistent(mutex) 0 319 #define getpid() GetCurrentProcessId() 320 #define MDB_FDATASYNC(fd) (!FlushFileBuffers(fd)) 321 #define MDB_MSYNC(addr,len,flags) (!FlushViewOfFile(addr,len)) 322 #define ErrCode() GetLastError() 323 #define GET_PAGESIZE(x) {SYSTEM_INFO si; GetSystemInfo(&si); (x) = si.dwPageSize;} 324 #define close(fd) (CloseHandle(fd) ? 0 : -1) 325 #define munmap(ptr,len) UnmapViewOfFile(ptr) 326 #ifdef PROCESS_QUERY_LIMITED_INFORMATION 327 #define MDB_PROCESS_QUERY_LIMITED_INFORMATION PROCESS_QUERY_LIMITED_INFORMATION 328 #else 329 #define MDB_PROCESS_QUERY_LIMITED_INFORMATION 0x1000 330 #endif 331 #define Z "I" 332 #else 333 #define THREAD_RET void * 334 #define THREAD_CREATE(thr,start,arg) pthread_create(&thr,NULL,start,arg) 335 #define THREAD_FINISH(thr) pthread_join(thr,NULL) 336 #define Z "z" /**< printf format modifier for size_t */ 337 338 /** For MDB_LOCK_FORMAT: True if readers take a pid lock in the lockfile */ 339 #define MDB_PIDLOCK 1 340 341 #ifdef MDB_USE_POSIX_SEM 342 343 typedef sem_t *mdb_mutex_t, *mdb_mutexref_t; 344 #define LOCK_MUTEX0(mutex) mdb_sem_wait(mutex) 345 #define UNLOCK_MUTEX(mutex) sem_post(mutex) 346 347 static int 348 mdb_sem_wait(sem_t *sem) 349 { 350 int rc; 351 while ((rc = sem_wait(sem)) && (rc = errno) == EINTR) ; 352 return rc; 353 } 354 355 #else /* MDB_USE_POSIX_MUTEX: */ 356 /** Shared mutex/semaphore as the original is stored. 357 * 358 * Not for copies. Instead it can be assigned to an #mdb_mutexref_t. 359 * When mdb_mutexref_t is a pointer and mdb_mutex_t is not, then it 360 * is array[size 1] so it can be assigned to the pointer. 361 */ 362 typedef pthread_mutex_t mdb_mutex_t[1]; 363 /** Reference to an #mdb_mutex_t */ 364 typedef pthread_mutex_t *mdb_mutexref_t; 365 /** Lock the reader or writer mutex. 366 * Returns 0 or a code to give #mdb_mutex_failed(), as in #LOCK_MUTEX(). 367 */ 368 #define LOCK_MUTEX0(mutex) pthread_mutex_lock(mutex) 369 /** Unlock the reader or writer mutex. 370 */ 371 #define UNLOCK_MUTEX(mutex) pthread_mutex_unlock(mutex) 372 /** Mark mutex-protected data as repaired, after death of previous owner. 373 */ 374 #define mdb_mutex_consistent(mutex) pthread_mutex_consistent(mutex) 375 #endif /* MDB_USE_POSIX_SEM */ 376 377 /** Get the error code for the last failed system function. 378 */ 379 #define ErrCode() errno 380 381 /** An abstraction for a file handle. 382 * On POSIX systems file handles are small integers. On Windows 383 * they're opaque pointers. 384 */ 385 #define HANDLE int 386 387 /** A value for an invalid file handle. 388 * Mainly used to initialize file variables and signify that they are 389 * unused. 390 */ 391 #define INVALID_HANDLE_VALUE (-1) 392 393 /** Get the size of a memory page for the system. 394 * This is the basic size that the platform's memory manager uses, and is 395 * fundamental to the use of memory-mapped files. 396 */ 397 #define GET_PAGESIZE(x) ((x) = sysconf(_SC_PAGE_SIZE)) 398 #endif 399 400 #if defined(_WIN32) || defined(MDB_USE_POSIX_SEM) 401 #define MNAME_LEN 32 402 #else 403 #define MNAME_LEN (sizeof(pthread_mutex_t)) 404 #endif 405 406 /** @} */ 407 408 #ifdef MDB_ROBUST_SUPPORTED 409 /** Lock mutex, handle any error, set rc = result. 410 * Return 0 on success, nonzero (not rc) on error. 411 */ 412 #define LOCK_MUTEX(rc, env, mutex) \ 413 (((rc) = LOCK_MUTEX0(mutex)) && \ 414 ((rc) = mdb_mutex_failed(env, mutex, rc))) 415 static int mdb_mutex_failed(MDB_env *env, mdb_mutexref_t mutex, int rc); 416 #else 417 #define LOCK_MUTEX(rc, env, mutex) ((rc) = LOCK_MUTEX0(mutex)) 418 #define mdb_mutex_failed(env, mutex, rc) (rc) 419 #endif 420 421 #ifndef _WIN32 422 /** A flag for opening a file and requesting synchronous data writes. 423 * This is only used when writing a meta page. It's not strictly needed; 424 * we could just do a normal write and then immediately perform a flush. 425 * But if this flag is available it saves us an extra system call. 426 * 427 * @note If O_DSYNC is undefined but exists in /usr/include, 428 * preferably set some compiler flag to get the definition. 429 */ 430 #ifndef MDB_DSYNC 431 # ifdef O_DSYNC 432 # define MDB_DSYNC O_DSYNC 433 # else 434 # define MDB_DSYNC O_SYNC 435 # endif 436 #endif 437 #endif 438 439 /** Function for flushing the data of a file. Define this to fsync 440 * if fdatasync() is not supported. 441 */ 442 #ifndef MDB_FDATASYNC 443 # define MDB_FDATASYNC fdatasync 444 #endif 445 446 #ifndef MDB_MSYNC 447 # define MDB_MSYNC(addr,len,flags) msync(addr,len,flags) 448 #endif 449 450 #ifndef MS_SYNC 451 #define MS_SYNC 1 452 #endif 453 454 #ifndef MS_ASYNC 455 #define MS_ASYNC 0 456 #endif 457 458 /** A page number in the database. 459 * Note that 64 bit page numbers are overkill, since pages themselves 460 * already represent 12-13 bits of addressable memory, and the OS will 461 * always limit applications to a maximum of 63 bits of address space. 462 * 463 * @note In the #MDB_node structure, we only store 48 bits of this value, 464 * which thus limits us to only 60 bits of addressable data. 465 */ 466 typedef MDB_ID pgno_t; 467 468 /** A transaction ID. 469 * See struct MDB_txn.mt_txnid for details. 470 */ 471 typedef MDB_ID txnid_t; 472 473 /** @defgroup debug Debug Macros 474 * @{ 475 */ 476 #ifndef MDB_DEBUG 477 /** Enable debug output. Needs variable argument macros (a C99 feature). 478 * Set this to 1 for copious tracing. Set to 2 to add dumps of all IDLs 479 * read from and written to the database (used for free space management). 480 */ 481 #define MDB_DEBUG 0 482 #endif 483 484 #if MDB_DEBUG 485 static int mdb_debug; 486 static txnid_t mdb_debug_start; 487 488 /** Print a debug message with printf formatting. 489 * Requires double parenthesis around 2 or more args. 490 */ 491 # define DPRINTF(args) ((void) ((mdb_debug) && DPRINTF0 args)) 492 # define DPRINTF0(fmt, ...) \ 493 fprintf(stderr, "%s:%d " fmt "\n", mdb_func_, __LINE__, __VA_ARGS__) 494 #else 495 # define DPRINTF(args) ((void) 0) 496 #endif 497 /** Print a debug string. 498 * The string is printed literally, with no format processing. 499 */ 500 #define DPUTS(arg) DPRINTF(("%s", arg)) 501 /** Debugging output value of a cursor DBI: Negative in a sub-cursor. */ 502 #define DDBI(mc) \ 503 (((mc)->mc_flags & C_SUB) ? -(int)(mc)->mc_dbi : (int)(mc)->mc_dbi) 504 /** @} */ 505 506 /** @brief The maximum size of a database page. 507 * 508 * It is 32k or 64k, since value-PAGEBASE must fit in 509 * #MDB_page.%mp_upper. 510 * 511 * LMDB will use database pages < OS pages if needed. 512 * That causes more I/O in write transactions: The OS must 513 * know (read) the whole page before writing a partial page. 514 * 515 * Note that we don't currently support Huge pages. On Linux, 516 * regular data files cannot use Huge pages, and in general 517 * Huge pages aren't actually pageable. We rely on the OS 518 * demand-pager to read our data and page it out when memory 519 * pressure from other processes is high. So until OSs have 520 * actual paging support for Huge pages, they're not viable. 521 */ 522 #define MAX_PAGESIZE (PAGEBASE ? 0x10000 : 0x8000) 523 524 /** The minimum number of keys required in a database page. 525 * Setting this to a larger value will place a smaller bound on the 526 * maximum size of a data item. Data items larger than this size will 527 * be pushed into overflow pages instead of being stored directly in 528 * the B-tree node. This value used to default to 4. With a page size 529 * of 4096 bytes that meant that any item larger than 1024 bytes would 530 * go into an overflow page. That also meant that on average 2-3KB of 531 * each overflow page was wasted space. The value cannot be lower than 532 * 2 because then there would no longer be a tree structure. With this 533 * value, items larger than 2KB will go into overflow pages, and on 534 * average only 1KB will be wasted. 535 */ 536 #define MDB_MINKEYS 2 537 538 /** A stamp that identifies a file as an LMDB file. 539 * There's nothing special about this value other than that it is easily 540 * recognizable, and it will reflect any byte order mismatches. 541 */ 542 #define MDB_MAGIC 0xBEEFC0DE 543 544 /** The version number for a database's datafile format. */ 545 #define MDB_DATA_VERSION ((MDB_DEVEL) ? 999 : 1) 546 /** The version number for a database's lockfile format. */ 547 #define MDB_LOCK_VERSION 1 548 549 /** @brief The max size of a key we can write, or 0 for computed max. 550 * 551 * This macro should normally be left alone or set to 0. 552 * Note that a database with big keys or dupsort data cannot be 553 * reliably modified by a liblmdb which uses a smaller max. 554 * The default is 511 for backwards compat, or 0 when #MDB_DEVEL. 555 * 556 * Other values are allowed, for backwards compat. However: 557 * A value bigger than the computed max can break if you do not 558 * know what you are doing, and liblmdb <= 0.9.10 can break when 559 * modifying a DB with keys/dupsort data bigger than its max. 560 * 561 * Data items in an #MDB_DUPSORT database are also limited to 562 * this size, since they're actually keys of a sub-DB. Keys and 563 * #MDB_DUPSORT data items must fit on a node in a regular page. 564 */ 565 #ifndef MDB_MAXKEYSIZE 566 #define MDB_MAXKEYSIZE ((MDB_DEVEL) ? 0 : 511) 567 #endif 568 569 /** The maximum size of a key we can write to the environment. */ 570 #if MDB_MAXKEYSIZE 571 #define ENV_MAXKEY(env) (MDB_MAXKEYSIZE) 572 #else 573 #define ENV_MAXKEY(env) ((env)->me_maxkey) 574 #endif 575 576 /** @brief The maximum size of a data item. 577 * 578 * We only store a 32 bit value for node sizes. 579 */ 580 #define MAXDATASIZE 0xffffffffUL 581 582 #if MDB_DEBUG 583 /** Key size which fits in a #DKBUF. 584 * @ingroup debug 585 */ 586 #define DKBUF_MAXKEYSIZE ((MDB_MAXKEYSIZE) > 0 ? (MDB_MAXKEYSIZE) : 511) 587 /** A key buffer. 588 * @ingroup debug 589 * This is used for printing a hex dump of a key's contents. 590 */ 591 #define DKBUF char kbuf[DKBUF_MAXKEYSIZE*2+1] 592 /** Display a key in hex. 593 * @ingroup debug 594 * Invoke a function to display a key in hex. 595 */ 596 #define DKEY(x) mdb_dkey(x, kbuf) 597 #else 598 #define DKBUF 599 #define DKEY(x) 0 600 #endif 601 602 /** An invalid page number. 603 * Mainly used to denote an empty tree. 604 */ 605 #define P_INVALID (~(pgno_t)0) 606 607 /** Test if the flags \b f are set in a flag word \b w. */ 608 #define F_ISSET(w, f) (((w) & (f)) == (f)) 609 610 /** Round \b n up to an even number. */ 611 #define EVEN(n) (((n) + 1U) & -2) /* sign-extending -2 to match n+1U */ 612 613 /** Used for offsets within a single page. 614 * Since memory pages are typically 4 or 8KB in size, 12-13 bits, 615 * this is plenty. 616 */ 617 typedef uint16_t indx_t; 618 619 /** Default size of memory map. 620 * This is certainly too small for any actual applications. Apps should always set 621 * the size explicitly using #mdb_env_set_mapsize(). 622 */ 623 #define DEFAULT_MAPSIZE 1048576 624 625 /** @defgroup readers Reader Lock Table 626 * Readers don't acquire any locks for their data access. Instead, they 627 * simply record their transaction ID in the reader table. The reader 628 * mutex is needed just to find an empty slot in the reader table. The 629 * slot's address is saved in thread-specific data so that subsequent read 630 * transactions started by the same thread need no further locking to proceed. 631 * 632 * If #MDB_NOTLS is set, the slot address is not saved in thread-specific data. 633 * 634 * No reader table is used if the database is on a read-only filesystem, or 635 * if #MDB_NOLOCK is set. 636 * 637 * Since the database uses multi-version concurrency control, readers don't 638 * actually need any locking. This table is used to keep track of which 639 * readers are using data from which old transactions, so that we'll know 640 * when a particular old transaction is no longer in use. Old transactions 641 * that have discarded any data pages can then have those pages reclaimed 642 * for use by a later write transaction. 643 * 644 * The lock table is constructed such that reader slots are aligned with the 645 * processor's cache line size. Any slot is only ever used by one thread. 646 * This alignment guarantees that there will be no contention or cache 647 * thrashing as threads update their own slot info, and also eliminates 648 * any need for locking when accessing a slot. 649 * 650 * A writer thread will scan every slot in the table to determine the oldest 651 * outstanding reader transaction. Any freed pages older than this will be 652 * reclaimed by the writer. The writer doesn't use any locks when scanning 653 * this table. This means that there's no guarantee that the writer will 654 * see the most up-to-date reader info, but that's not required for correct 655 * operation - all we need is to know the upper bound on the oldest reader, 656 * we don't care at all about the newest reader. So the only consequence of 657 * reading stale information here is that old pages might hang around a 658 * while longer before being reclaimed. That's actually good anyway, because 659 * the longer we delay reclaiming old pages, the more likely it is that a 660 * string of contiguous pages can be found after coalescing old pages from 661 * many old transactions together. 662 * @{ 663 */ 664 /** Number of slots in the reader table. 665 * This value was chosen somewhat arbitrarily. 126 readers plus a 666 * couple mutexes fit exactly into 8KB on my development machine. 667 * Applications should set the table size using #mdb_env_set_maxreaders(). 668 */ 669 #define DEFAULT_READERS 126 670 671 /** The size of a CPU cache line in bytes. We want our lock structures 672 * aligned to this size to avoid false cache line sharing in the 673 * lock table. 674 * This value works for most CPUs. For Itanium this should be 128. 675 */ 676 #ifndef CACHELINE 677 #define CACHELINE 64 678 #endif 679 680 /** The information we store in a single slot of the reader table. 681 * In addition to a transaction ID, we also record the process and 682 * thread ID that owns a slot, so that we can detect stale information, 683 * e.g. threads or processes that went away without cleaning up. 684 * @note We currently don't check for stale records. We simply re-init 685 * the table when we know that we're the only process opening the 686 * lock file. 687 */ 688 typedef struct MDB_rxbody { 689 /** Current Transaction ID when this transaction began, or (txnid_t)-1. 690 * Multiple readers that start at the same time will probably have the 691 * same ID here. Again, it's not important to exclude them from 692 * anything; all we need to know is which version of the DB they 693 * started from so we can avoid overwriting any data used in that 694 * particular version. 695 */ 696 volatile txnid_t mrb_txnid; 697 /** The process ID of the process owning this reader txn. */ 698 volatile MDB_PID_T mrb_pid; 699 /** The thread ID of the thread owning this txn. */ 700 volatile MDB_THR_T mrb_tid; 701 } MDB_rxbody; 702 703 /** The actual reader record, with cacheline padding. */ 704 typedef struct MDB_reader { 705 union { 706 MDB_rxbody mrx; 707 /** shorthand for mrb_txnid */ 708 #define mr_txnid mru.mrx.mrb_txnid 709 #define mr_pid mru.mrx.mrb_pid 710 #define mr_tid mru.mrx.mrb_tid 711 /** cache line alignment */ 712 char pad[(sizeof(MDB_rxbody)+CACHELINE-1) & ~(CACHELINE-1)]; 713 } mru; 714 } MDB_reader; 715 716 /** The header for the reader table. 717 * The table resides in a memory-mapped file. (This is a different file 718 * than is used for the main database.) 719 * 720 * For POSIX the actual mutexes reside in the shared memory of this 721 * mapped file. On Windows, mutexes are named objects allocated by the 722 * kernel; we store the mutex names in this mapped file so that other 723 * processes can grab them. This same approach is also used on 724 * MacOSX/Darwin (using named semaphores) since MacOSX doesn't support 725 * process-shared POSIX mutexes. For these cases where a named object 726 * is used, the object name is derived from a 64 bit FNV hash of the 727 * environment pathname. As such, naming collisions are extremely 728 * unlikely. If a collision occurs, the results are unpredictable. 729 */ 730 typedef struct MDB_txbody { 731 /** Stamp identifying this as an LMDB file. It must be set 732 * to #MDB_MAGIC. */ 733 uint32_t mtb_magic; 734 /** Format of this lock file. Must be set to #MDB_LOCK_FORMAT. */ 735 uint32_t mtb_format; 736 #if defined(_WIN32) || defined(MDB_USE_POSIX_SEM) 737 char mtb_rmname[MNAME_LEN]; 738 #else 739 /** Mutex protecting access to this table. 740 * This is the reader table lock used with LOCK_MUTEX(). 741 */ 742 mdb_mutex_t mtb_rmutex; 743 #endif 744 /** The ID of the last transaction committed to the database. 745 * This is recorded here only for convenience; the value can always 746 * be determined by reading the main database meta pages. 747 */ 748 volatile txnid_t mtb_txnid; 749 /** The number of slots that have been used in the reader table. 750 * This always records the maximum count, it is not decremented 751 * when readers release their slots. 752 */ 753 volatile unsigned mtb_numreaders; 754 } MDB_txbody; 755 756 /** The actual reader table definition. */ 757 typedef struct MDB_txninfo { 758 union { 759 MDB_txbody mtb; 760 #define mti_magic mt1.mtb.mtb_magic 761 #define mti_format mt1.mtb.mtb_format 762 #define mti_rmutex mt1.mtb.mtb_rmutex 763 #define mti_rmname mt1.mtb.mtb_rmname 764 #define mti_txnid mt1.mtb.mtb_txnid 765 #define mti_numreaders mt1.mtb.mtb_numreaders 766 char pad[(sizeof(MDB_txbody)+CACHELINE-1) & ~(CACHELINE-1)]; 767 } mt1; 768 union { 769 #if defined(_WIN32) || defined(MDB_USE_POSIX_SEM) 770 char mt2_wmname[MNAME_LEN]; 771 #define mti_wmname mt2.mt2_wmname 772 #else 773 mdb_mutex_t mt2_wmutex; 774 #define mti_wmutex mt2.mt2_wmutex 775 #endif 776 char pad[(MNAME_LEN+CACHELINE-1) & ~(CACHELINE-1)]; 777 } mt2; 778 MDB_reader mti_readers[1]; 779 } MDB_txninfo; 780 781 /** Lockfile format signature: version, features and field layout */ 782 #define MDB_LOCK_FORMAT \ 783 ((uint32_t) \ 784 ((MDB_LOCK_VERSION) \ 785 /* Flags which describe functionality */ \ 786 + (((MDB_PIDLOCK) != 0) << 16))) 787 /** @} */ 788 789 /** Common header for all page types. The page type depends on #mp_flags. 790 * 791 * #P_BRANCH and #P_LEAF pages have unsorted '#MDB_node's at the end, with 792 * sorted #mp_ptrs[] entries referring to them. Exception: #P_LEAF2 pages 793 * omit mp_ptrs and pack sorted #MDB_DUPFIXED values after the page header. 794 * 795 * #P_OVERFLOW records occupy one or more contiguous pages where only the 796 * first has a page header. They hold the real data of #F_BIGDATA nodes. 797 * 798 * #P_SUBP sub-pages are small leaf "pages" with duplicate data. 799 * A node with flag #F_DUPDATA but not #F_SUBDATA contains a sub-page. 800 * (Duplicate data can also go in sub-databases, which use normal pages.) 801 * 802 * #P_META pages contain #MDB_meta, the start point of an LMDB snapshot. 803 * 804 * Each non-metapage up to #MDB_meta.%mm_last_pg is reachable exactly once 805 * in the snapshot: Either used by a database or listed in a freeDB record. 806 */ 807 typedef struct MDB_page { 808 #define mp_pgno mp_p.p_pgno 809 #define mp_next mp_p.p_next 810 union { 811 pgno_t p_pgno; /**< page number */ 812 struct MDB_page *p_next; /**< for in-memory list of freed pages */ 813 } mp_p; 814 uint16_t mp_pad; /**< key size if this is a LEAF2 page */ 815 /** @defgroup mdb_page Page Flags 816 * @ingroup internal 817 * Flags for the page headers. 818 * @{ 819 */ 820 #define P_BRANCH 0x01 /**< branch page */ 821 #define P_LEAF 0x02 /**< leaf page */ 822 #define P_OVERFLOW 0x04 /**< overflow page */ 823 #define P_META 0x08 /**< meta page */ 824 #define P_DIRTY 0x10 /**< dirty page, also set for #P_SUBP pages */ 825 #define P_LEAF2 0x20 /**< for #MDB_DUPFIXED records */ 826 #define P_SUBP 0x40 /**< for #MDB_DUPSORT sub-pages */ 827 #define P_LOOSE 0x4000 /**< page was dirtied then freed, can be reused */ 828 #define P_KEEP 0x8000 /**< leave this page alone during spill */ 829 /** @} */ 830 uint16_t mp_flags; /**< @ref mdb_page */ 831 #define mp_lower mp_pb.pb.pb_lower 832 #define mp_upper mp_pb.pb.pb_upper 833 #define mp_pages mp_pb.pb_pages 834 union { 835 struct { 836 indx_t pb_lower; /**< lower bound of free space */ 837 indx_t pb_upper; /**< upper bound of free space */ 838 } pb; 839 uint32_t pb_pages; /**< number of overflow pages */ 840 } mp_pb; 841 indx_t mp_ptrs[0]; /**< dynamic size */ 842 } MDB_page; 843 844 /** Alternate page header, for 2-byte aligned access */ 845 typedef struct MDB_page2 { 846 uint16_t mp2_p[sizeof(pgno_t)/2]; 847 uint16_t mp2_pad; 848 uint16_t mp2_flags; 849 indx_t mp2_lower; 850 indx_t mp2_upper; 851 indx_t mp2_ptrs[0]; 852 } MDB_page2; 853 854 #define MP_PGNO(p) (((MDB_page2 *)(void *)(p))->mp2_p) 855 #define MP_PAD(p) (((MDB_page2 *)(void *)(p))->mp2_pad) 856 #define MP_FLAGS(p) (((MDB_page2 *)(void *)(p))->mp2_flags) 857 #define MP_LOWER(p) (((MDB_page2 *)(void *)(p))->mp2_lower) 858 #define MP_UPPER(p) (((MDB_page2 *)(void *)(p))->mp2_upper) 859 #define MP_PTRS(p) (((MDB_page2 *)(void *)(p))->mp2_ptrs) 860 861 /** Size of the page header, excluding dynamic data at the end */ 862 #define PAGEHDRSZ ((unsigned) offsetof(MDB_page, mp_ptrs)) 863 864 /** Address of first usable data byte in a page, after the header */ 865 #define METADATA(p) ((void *)((char *)(p) + PAGEHDRSZ)) 866 867 /** ITS#7713, change PAGEBASE to handle 65536 byte pages */ 868 #define PAGEBASE ((MDB_DEVEL) ? PAGEHDRSZ : 0) 869 870 /** Number of nodes on a page */ 871 #define NUMKEYS(p) ((MP_LOWER(p) - (PAGEHDRSZ-PAGEBASE)) >> 1) 872 873 /** The amount of space remaining in the page */ 874 #define SIZELEFT(p) (indx_t)(MP_UPPER(p) - MP_LOWER(p)) 875 876 /** The percentage of space used in the page, in tenths of a percent. */ 877 #define PAGEFILL(env, p) (1000L * ((env)->me_psize - PAGEHDRSZ - SIZELEFT(p)) / \ 878 ((env)->me_psize - PAGEHDRSZ)) 879 /** The minimum page fill factor, in tenths of a percent. 880 * Pages emptier than this are candidates for merging. 881 */ 882 #define FILL_THRESHOLD 250 883 884 /** Test if a page is a leaf page */ 885 #define IS_LEAF(p) F_ISSET(MP_FLAGS(p), P_LEAF) 886 /** Test if a page is a LEAF2 page */ 887 #define IS_LEAF2(p) F_ISSET(MP_FLAGS(p), P_LEAF2) 888 /** Test if a page is a branch page */ 889 #define IS_BRANCH(p) F_ISSET(MP_FLAGS(p), P_BRANCH) 890 /** Test if a page is an overflow page */ 891 #define IS_OVERFLOW(p) F_ISSET(MP_FLAGS(p), P_OVERFLOW) 892 /** Test if a page is a sub page */ 893 #define IS_SUBP(p) F_ISSET(MP_FLAGS(p), P_SUBP) 894 895 /** The number of overflow pages needed to store the given size. */ 896 #define OVPAGES(size, psize) ((PAGEHDRSZ-1 + (size)) / (psize) + 1) 897 898 /** Link in #MDB_txn.%mt_loose_pgs list. 899 * Kept outside the page header, which is needed when reusing the page. 900 */ 901 #define NEXT_LOOSE_PAGE(p) (*(MDB_page **)((p) + 2)) 902 903 /** Header for a single key/data pair within a page. 904 * Used in pages of type #P_BRANCH and #P_LEAF without #P_LEAF2. 905 * We guarantee 2-byte alignment for 'MDB_node's. 906 * 907 * #mn_lo and #mn_hi are used for data size on leaf nodes, and for child 908 * pgno on branch nodes. On 64 bit platforms, #mn_flags is also used 909 * for pgno. (Branch nodes have no flags). Lo and hi are in host byte 910 * order in case some accesses can be optimized to 32-bit word access. 911 * 912 * Leaf node flags describe node contents. #F_BIGDATA says the node's 913 * data part is the page number of an overflow page with actual data. 914 * #F_DUPDATA and #F_SUBDATA can be combined giving duplicate data in 915 * a sub-page/sub-database, and named databases (just #F_SUBDATA). 916 */ 917 typedef struct MDB_node { 918 /** part of data size or pgno 919 * @{ */ 920 #if BYTE_ORDER == LITTLE_ENDIAN 921 unsigned short mn_lo, mn_hi; 922 #else 923 unsigned short mn_hi, mn_lo; 924 #endif 925 /** @} */ 926 /** @defgroup mdb_node Node Flags 927 * @ingroup internal 928 * Flags for node headers. 929 * @{ 930 */ 931 #define F_BIGDATA 0x01 /**< data put on overflow page */ 932 #define F_SUBDATA 0x02 /**< data is a sub-database */ 933 #define F_DUPDATA 0x04 /**< data has duplicates */ 934 935 /** valid flags for #mdb_node_add() */ 936 #define NODE_ADD_FLAGS (F_DUPDATA|F_SUBDATA|MDB_RESERVE|MDB_APPEND) 937 938 /** @} */ 939 unsigned short mn_flags; /**< @ref mdb_node */ 940 unsigned short mn_ksize; /**< key size */ 941 char mn_data[1]; /**< key and data are appended here */ 942 } MDB_node; 943 944 /** Size of the node header, excluding dynamic data at the end */ 945 #define NODESIZE offsetof(MDB_node, mn_data) 946 947 /** Bit position of top word in page number, for shifting mn_flags */ 948 #define PGNO_TOPWORD ((pgno_t)-1 > 0xffffffffu ? 32 : 0) 949 950 /** Size of a node in a branch page with a given key. 951 * This is just the node header plus the key, there is no data. 952 */ 953 #define INDXSIZE(k) (NODESIZE + ((k) == NULL ? 0 : (k)->mv_size)) 954 955 /** Size of a node in a leaf page with a given key and data. 956 * This is node header plus key plus data size. 957 */ 958 #define LEAFSIZE(k, d) (NODESIZE + (k)->mv_size + (d)->mv_size) 959 960 /** Address of node \b i in page \b p */ 961 #define NODEPTR(p, i) ((MDB_node *)((char *)(p) + MP_PTRS(p)[i] + PAGEBASE)) 962 963 /** Address of the key for the node */ 964 #define NODEKEY(node) (void *)((node)->mn_data) 965 966 /** Address of the data for a node */ 967 #define NODEDATA(node) (void *)((char *)(node)->mn_data + (node)->mn_ksize) 968 969 /** Get the page number pointed to by a branch node */ 970 #define NODEPGNO(node) \ 971 ((node)->mn_lo | ((pgno_t) (node)->mn_hi << 16) | \ 972 (PGNO_TOPWORD ? ((pgno_t) (node)->mn_flags << PGNO_TOPWORD) : 0)) 973 /** Set the page number in a branch node */ 974 #define SETPGNO(node,pgno) do { \ 975 (node)->mn_lo = (pgno) & 0xffff; (node)->mn_hi = (pgno) >> 16; \ 976 if (PGNO_TOPWORD) (node)->mn_flags = (pgno) >> PGNO_TOPWORD; } while(0) 977 978 /** Get the size of the data in a leaf node */ 979 #define NODEDSZ(node) ((node)->mn_lo | ((unsigned)(node)->mn_hi << 16)) 980 /** Set the size of the data for a leaf node */ 981 #define SETDSZ(node,size) do { \ 982 (node)->mn_lo = (size) & 0xffff; (node)->mn_hi = (size) >> 16;} while(0) 983 /** The size of a key in a node */ 984 #define NODEKSZ(node) ((node)->mn_ksize) 985 986 /** Copy a page number from src to dst */ 987 #ifdef MISALIGNED_OK 988 #define COPY_PGNO(dst,src) dst = src 989 #undef MP_PGNO 990 #define MP_PGNO(p) ((p)->mp_pgno) 991 #else 992 #if SIZE_MAX > 4294967295UL 993 #define COPY_PGNO(dst,src) do { \ 994 unsigned short *s, *d; \ 995 s = (unsigned short *)&(src); \ 996 d = (unsigned short *)&(dst); \ 997 *d++ = *s++; \ 998 *d++ = *s++; \ 999 *d++ = *s++; \ 1000 *d = *s; \ 1001 } while (0) 1002 #else 1003 #define COPY_PGNO(dst,src) do { \ 1004 unsigned short *s, *d; \ 1005 s = (unsigned short *)&(src); \ 1006 d = (unsigned short *)&(dst); \ 1007 *d++ = *s++; \ 1008 *d = *s; \ 1009 } while (0) 1010 #endif 1011 #endif 1012 /** The address of a key in a LEAF2 page. 1013 * LEAF2 pages are used for #MDB_DUPFIXED sorted-duplicate sub-DBs. 1014 * There are no node headers, keys are stored contiguously. 1015 */ 1016 #define LEAF2KEY(p, i, ks) ((char *)(p) + PAGEHDRSZ + ((i)*(ks))) 1017 1018 /** Set the \b node's key into \b keyptr, if requested. */ 1019 #define MDB_GET_KEY(node, keyptr) { if ((keyptr) != NULL) { \ 1020 (keyptr)->mv_size = NODEKSZ(node); (keyptr)->mv_data = NODEKEY(node); } } 1021 1022 /** Set the \b node's key into \b key. */ 1023 #define MDB_GET_KEY2(node, key) { key.mv_size = NODEKSZ(node); key.mv_data = NODEKEY(node); } 1024 1025 /** Information about a single database in the environment. */ 1026 typedef struct MDB_db { 1027 uint32_t md_pad; /**< also ksize for LEAF2 pages */ 1028 uint16_t md_flags; /**< @ref mdb_dbi_open */ 1029 uint16_t md_depth; /**< depth of this tree */ 1030 pgno_t md_branch_pages; /**< number of internal pages */ 1031 pgno_t md_leaf_pages; /**< number of leaf pages */ 1032 pgno_t md_overflow_pages; /**< number of overflow pages */ 1033 size_t md_entries; /**< number of data items */ 1034 pgno_t md_root; /**< the root page of this tree */ 1035 } MDB_db; 1036 1037 #define MDB_VALID 0x8000 /**< DB handle is valid, for me_dbflags */ 1038 #define PERSISTENT_FLAGS (0xffff & ~(MDB_VALID)) 1039 /** #mdb_dbi_open() flags */ 1040 #define VALID_FLAGS (MDB_REVERSEKEY|MDB_DUPSORT|MDB_INTEGERKEY|MDB_DUPFIXED|\ 1041 MDB_INTEGERDUP|MDB_REVERSEDUP|MDB_CREATE) 1042 1043 /** Handle for the DB used to track free pages. */ 1044 #define FREE_DBI 0 1045 /** Handle for the default DB. */ 1046 #define MAIN_DBI 1 1047 /** Number of DBs in metapage (free and main) - also hardcoded elsewhere */ 1048 #define CORE_DBS 2 1049 1050 /** Number of meta pages - also hardcoded elsewhere */ 1051 #define NUM_METAS 2 1052 1053 /** Meta page content. 1054 * A meta page is the start point for accessing a database snapshot. 1055 * Pages 0-1 are meta pages. Transaction N writes meta page #(N % 2). 1056 */ 1057 typedef struct MDB_meta { 1058 /** Stamp identifying this as an LMDB file. It must be set 1059 * to #MDB_MAGIC. */ 1060 uint32_t mm_magic; 1061 /** Version number of this file. Must be set to #MDB_DATA_VERSION. */ 1062 uint32_t mm_version; 1063 void *mm_address; /**< address for fixed mapping */ 1064 size_t mm_mapsize; /**< size of mmap region */ 1065 MDB_db mm_dbs[CORE_DBS]; /**< first is free space, 2nd is main db */ 1066 /** The size of pages used in this DB */ 1067 #define mm_psize mm_dbs[FREE_DBI].md_pad 1068 /** Any persistent environment flags. @ref mdb_env */ 1069 #define mm_flags mm_dbs[FREE_DBI].md_flags 1070 /** Last used page in the datafile. 1071 * Actually the file may be shorter if the freeDB lists the final pages. 1072 */ 1073 pgno_t mm_last_pg; 1074 volatile txnid_t mm_txnid; /**< txnid that committed this page */ 1075 } MDB_meta; 1076 1077 /** Buffer for a stack-allocated meta page. 1078 * The members define size and alignment, and silence type 1079 * aliasing warnings. They are not used directly; that could 1080 * mean incorrectly using several union members in parallel. 1081 */ 1082 typedef union MDB_metabuf { 1083 MDB_page mb_page; 1084 struct { 1085 char mm_pad[PAGEHDRSZ]; 1086 MDB_meta mm_meta; 1087 } mb_metabuf; 1088 } MDB_metabuf; 1089 1090 /** Auxiliary DB info. 1091 * The information here is mostly static/read-only. There is 1092 * only a single copy of this record in the environment. 1093 */ 1094 typedef struct MDB_dbx { 1095 MDB_val md_name; /**< name of the database */ 1096 MDB_cmp_func *md_cmp; /**< function for comparing keys */ 1097 MDB_cmp_func *md_dcmp; /**< function for comparing data items */ 1098 MDB_rel_func *md_rel; /**< user relocate function */ 1099 void *md_relctx; /**< user-provided context for md_rel */ 1100 } MDB_dbx; 1101 1102 /** A database transaction. 1103 * Every operation requires a transaction handle. 1104 */ 1105 struct MDB_txn { 1106 MDB_txn *mt_parent; /**< parent of a nested txn */ 1107 /** Nested txn under this txn, set together with flag #MDB_TXN_HAS_CHILD */ 1108 MDB_txn *mt_child; 1109 pgno_t mt_next_pgno; /**< next unallocated page */ 1110 /** The ID of this transaction. IDs are integers incrementing from 1. 1111 * Only committed write transactions increment the ID. If a transaction 1112 * aborts, the ID may be re-used by the next writer. 1113 */ 1114 txnid_t mt_txnid; 1115 MDB_env *mt_env; /**< the DB environment */ 1116 /** The list of pages that became unused during this transaction. 1117 */ 1118 MDB_IDL mt_free_pgs; 1119 /** The list of loose pages that became unused and may be reused 1120 * in this transaction, linked through #NEXT_LOOSE_PAGE(page). 1121 */ 1122 MDB_page *mt_loose_pgs; 1123 /** Number of loose pages (#mt_loose_pgs) */ 1124 int mt_loose_count; 1125 /** The sorted list of dirty pages we temporarily wrote to disk 1126 * because the dirty list was full. page numbers in here are 1127 * shifted left by 1, deleted slots have the LSB set. 1128 */ 1129 MDB_IDL mt_spill_pgs; 1130 union { 1131 /** For write txns: Modified pages. Sorted when not MDB_WRITEMAP. */ 1132 MDB_ID2L dirty_list; 1133 /** For read txns: This thread/txn's reader table slot, or NULL. */ 1134 MDB_reader *reader; 1135 } mt_u; 1136 /** Array of records for each DB known in the environment. */ 1137 MDB_dbx *mt_dbxs; 1138 /** Array of MDB_db records for each known DB */ 1139 MDB_db *mt_dbs; 1140 /** Array of sequence numbers for each DB handle */ 1141 unsigned int *mt_dbiseqs; 1142 /** @defgroup mt_dbflag Transaction DB Flags 1143 * @ingroup internal 1144 * @{ 1145 */ 1146 #define DB_DIRTY 0x01 /**< DB was written in this txn */ 1147 #define DB_STALE 0x02 /**< Named-DB record is older than txnID */ 1148 #define DB_NEW 0x04 /**< Named-DB handle opened in this txn */ 1149 #define DB_VALID 0x08 /**< DB handle is valid, see also #MDB_VALID */ 1150 #define DB_USRVALID 0x10 /**< As #DB_VALID, but not set for #FREE_DBI */ 1151 #define DB_DUPDATA 0x20 /**< DB is #MDB_DUPSORT data */ 1152 /** @} */ 1153 /** In write txns, array of cursors for each DB */ 1154 MDB_cursor **mt_cursors; 1155 /** Array of flags for each DB */ 1156 unsigned char *mt_dbflags; 1157 /** Number of DB records in use, or 0 when the txn is finished. 1158 * This number only ever increments until the txn finishes; we 1159 * don't decrement it when individual DB handles are closed. 1160 */ 1161 MDB_dbi mt_numdbs; 1162 1163 /** @defgroup mdb_txn Transaction Flags 1164 * @ingroup internal 1165 * @{ 1166 */ 1167 /** #mdb_txn_begin() flags */ 1168 #define MDB_TXN_BEGIN_FLAGS MDB_RDONLY 1169 #define MDB_TXN_RDONLY MDB_RDONLY /**< read-only transaction */ 1170 /* internal txn flags */ 1171 #define MDB_TXN_WRITEMAP MDB_WRITEMAP /**< copy of #MDB_env flag in writers */ 1172 #define MDB_TXN_FINISHED 0x01 /**< txn is finished or never began */ 1173 #define MDB_TXN_ERROR 0x02 /**< txn is unusable after an error */ 1174 #define MDB_TXN_DIRTY 0x04 /**< must write, even if dirty list is empty */ 1175 #define MDB_TXN_SPILLS 0x08 /**< txn or a parent has spilled pages */ 1176 #define MDB_TXN_HAS_CHILD 0x10 /**< txn has an #MDB_txn.%mt_child */ 1177 /** most operations on the txn are currently illegal */ 1178 #define MDB_TXN_BLOCKED (MDB_TXN_FINISHED|MDB_TXN_ERROR|MDB_TXN_HAS_CHILD) 1179 /** @} */ 1180 unsigned int mt_flags; /**< @ref mdb_txn */ 1181 /** #dirty_list room: Array size - \#dirty pages visible to this txn. 1182 * Includes ancestor txns' dirty pages not hidden by other txns' 1183 * dirty/spilled pages. Thus commit(nested txn) has room to merge 1184 * dirty_list into mt_parent after freeing hidden mt_parent pages. 1185 */ 1186 unsigned int mt_dirty_room; 1187 }; 1188 1189 /** Enough space for 2^32 nodes with minimum of 2 keys per node. I.e., plenty. 1190 * At 4 keys per node, enough for 2^64 nodes, so there's probably no need to 1191 * raise this on a 64 bit machine. 1192 */ 1193 #define CURSOR_STACK 32 1194 1195 struct MDB_xcursor; 1196 1197 /** Cursors are used for all DB operations. 1198 * A cursor holds a path of (page pointer, key index) from the DB 1199 * root to a position in the DB, plus other state. #MDB_DUPSORT 1200 * cursors include an xcursor to the current data item. Write txns 1201 * track their cursors and keep them up to date when data moves. 1202 * Exception: An xcursor's pointer to a #P_SUBP page can be stale. 1203 * (A node with #F_DUPDATA but no #F_SUBDATA contains a subpage). 1204 */ 1205 struct MDB_cursor { 1206 /** Next cursor on this DB in this txn */ 1207 MDB_cursor *mc_next; 1208 /** Backup of the original cursor if this cursor is a shadow */ 1209 MDB_cursor *mc_backup; 1210 /** Context used for databases with #MDB_DUPSORT, otherwise NULL */ 1211 struct MDB_xcursor *mc_xcursor; 1212 /** The transaction that owns this cursor */ 1213 MDB_txn *mc_txn; 1214 /** The database handle this cursor operates on */ 1215 MDB_dbi mc_dbi; 1216 /** The database record for this cursor */ 1217 MDB_db *mc_db; 1218 /** The database auxiliary record for this cursor */ 1219 MDB_dbx *mc_dbx; 1220 /** The @ref mt_dbflag for this database */ 1221 unsigned char *mc_dbflag; 1222 unsigned short mc_snum; /**< number of pushed pages */ 1223 unsigned short mc_top; /**< index of top page, normally mc_snum-1 */ 1224 /** @defgroup mdb_cursor Cursor Flags 1225 * @ingroup internal 1226 * Cursor state flags. 1227 * @{ 1228 */ 1229 #define C_INITIALIZED 0x01 /**< cursor has been initialized and is valid */ 1230 #define C_EOF 0x02 /**< No more data */ 1231 #define C_SUB 0x04 /**< Cursor is a sub-cursor */ 1232 #define C_DEL 0x08 /**< last op was a cursor_del */ 1233 #define C_UNTRACK 0x40 /**< Un-track cursor when closing */ 1234 /** @} */ 1235 unsigned int mc_flags; /**< @ref mdb_cursor */ 1236 MDB_page *mc_pg[CURSOR_STACK]; /**< stack of pushed pages */ 1237 indx_t mc_ki[CURSOR_STACK]; /**< stack of page indices */ 1238 }; 1239 1240 /** Context for sorted-dup records. 1241 * We could have gone to a fully recursive design, with arbitrarily 1242 * deep nesting of sub-databases. But for now we only handle these 1243 * levels - main DB, optional sub-DB, sorted-duplicate DB. 1244 */ 1245 typedef struct MDB_xcursor { 1246 /** A sub-cursor for traversing the Dup DB */ 1247 MDB_cursor mx_cursor; 1248 /** The database record for this Dup DB */ 1249 MDB_db mx_db; 1250 /** The auxiliary DB record for this Dup DB */ 1251 MDB_dbx mx_dbx; 1252 /** The @ref mt_dbflag for this Dup DB */ 1253 unsigned char mx_dbflag; 1254 } MDB_xcursor; 1255 1256 /** Check if there is an inited xcursor */ 1257 #define XCURSOR_INITED(mc) \ 1258 ((mc)->mc_xcursor && ((mc)->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED)) 1259 1260 /** Update the xcursor's sub-page pointer, if any, in \b mc. Needed 1261 * when the node which contains the sub-page may have moved. Called 1262 * with leaf page \b mp = mc->mc_pg[\b top]. 1263 */ 1264 #define XCURSOR_REFRESH(mc, top, mp) do { \ 1265 MDB_page *xr_pg = (mp); \ 1266 MDB_node *xr_node; \ 1267 if (!XCURSOR_INITED(mc) || (mc)->mc_ki[top] >= NUMKEYS(xr_pg)) break; \ 1268 xr_node = NODEPTR(xr_pg, (mc)->mc_ki[top]); \ 1269 if ((xr_node->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) \ 1270 (mc)->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(xr_node); \ 1271 } while (0) 1272 1273 /** State of FreeDB old pages, stored in the MDB_env */ 1274 typedef struct MDB_pgstate { 1275 pgno_t *mf_pghead; /**< Reclaimed freeDB pages, or NULL before use */ 1276 txnid_t mf_pglast; /**< ID of last used record, or 0 if !mf_pghead */ 1277 } MDB_pgstate; 1278 1279 /** The database environment. */ 1280 struct MDB_env { 1281 HANDLE me_fd; /**< The main data file */ 1282 HANDLE me_lfd; /**< The lock file */ 1283 HANDLE me_mfd; /**< For writing and syncing the meta pages */ 1284 /** Failed to update the meta page. Probably an I/O error. */ 1285 #define MDB_FATAL_ERROR 0x80000000U 1286 /** Some fields are initialized. */ 1287 #define MDB_ENV_ACTIVE 0x20000000U 1288 /** me_txkey is set */ 1289 #define MDB_ENV_TXKEY 0x10000000U 1290 /** fdatasync is unreliable */ 1291 #define MDB_FSYNCONLY 0x08000000U 1292 uint32_t me_flags; /**< @ref mdb_env */ 1293 unsigned int me_psize; /**< DB page size, inited from me_os_psize */ 1294 unsigned int me_os_psize; /**< OS page size, from #GET_PAGESIZE */ 1295 unsigned int me_maxreaders; /**< size of the reader table */ 1296 /** Max #MDB_txninfo.%mti_numreaders of interest to #mdb_env_close() */ 1297 volatile int me_close_readers; 1298 MDB_dbi me_numdbs; /**< number of DBs opened */ 1299 MDB_dbi me_maxdbs; /**< size of the DB table */ 1300 MDB_PID_T me_pid; /**< process ID of this env */ 1301 char *me_path; /**< path to the DB files */ 1302 char *me_map; /**< the memory map of the data file */ 1303 MDB_txninfo *me_txns; /**< the memory map of the lock file or NULL */ 1304 MDB_meta *me_metas[NUM_METAS]; /**< pointers to the two meta pages */ 1305 void *me_pbuf; /**< scratch area for DUPSORT put() */ 1306 MDB_txn *me_txn; /**< current write transaction */ 1307 MDB_txn *me_txn0; /**< prealloc'd write transaction */ 1308 size_t me_mapsize; /**< size of the data memory map */ 1309 off_t me_size; /**< current file size */ 1310 pgno_t me_maxpg; /**< me_mapsize / me_psize */ 1311 MDB_dbx *me_dbxs; /**< array of static DB info */ 1312 uint16_t *me_dbflags; /**< array of flags from MDB_db.md_flags */ 1313 unsigned int *me_dbiseqs; /**< array of dbi sequence numbers */ 1314 pthread_key_t me_txkey; /**< thread-key for readers */ 1315 txnid_t me_pgoldest; /**< ID of oldest reader last time we looked */ 1316 MDB_pgstate me_pgstate; /**< state of old pages from freeDB */ 1317 # define me_pglast me_pgstate.mf_pglast 1318 # define me_pghead me_pgstate.mf_pghead 1319 MDB_page *me_dpages; /**< list of malloc'd blocks for re-use */ 1320 /** IDL of pages that became unused in a write txn */ 1321 MDB_IDL me_free_pgs; 1322 /** ID2L of pages written during a write txn. Length MDB_IDL_UM_SIZE. */ 1323 MDB_ID2L me_dirty_list; 1324 /** Max number of freelist items that can fit in a single overflow page */ 1325 int me_maxfree_1pg; 1326 /** Max size of a node on a page */ 1327 unsigned int me_nodemax; 1328 #if !(MDB_MAXKEYSIZE) 1329 unsigned int me_maxkey; /**< max size of a key */ 1330 #endif 1331 int me_live_reader; /**< have liveness lock in reader table */ 1332 #ifdef _WIN32 1333 int me_pidquery; /**< Used in OpenProcess */ 1334 #endif 1335 #ifdef MDB_USE_POSIX_MUTEX /* Posix mutexes reside in shared mem */ 1336 # define me_rmutex me_txns->mti_rmutex /**< Shared reader lock */ 1337 # define me_wmutex me_txns->mti_wmutex /**< Shared writer lock */ 1338 #else 1339 mdb_mutex_t me_rmutex; 1340 mdb_mutex_t me_wmutex; 1341 #endif 1342 void *me_userctx; /**< User-settable context */ 1343 MDB_assert_func *me_assert_func; /**< Callback for assertion failures */ 1344 }; 1345 1346 /** Nested transaction */ 1347 typedef struct MDB_ntxn { 1348 MDB_txn mnt_txn; /**< the transaction */ 1349 MDB_pgstate mnt_pgstate; /**< parent transaction's saved freestate */ 1350 } MDB_ntxn; 1351 1352 /** max number of pages to commit in one writev() call */ 1353 #define MDB_COMMIT_PAGES 64 1354 #if defined(IOV_MAX) && IOV_MAX < MDB_COMMIT_PAGES 1355 #undef MDB_COMMIT_PAGES 1356 #define MDB_COMMIT_PAGES IOV_MAX 1357 #endif 1358 1359 /** max bytes to write in one call */ 1360 #define MAX_WRITE (0x40000000U >> (sizeof(ssize_t) == 4)) 1361 1362 /** Check \b txn and \b dbi arguments to a function */ 1363 #define TXN_DBI_EXIST(txn, dbi, validity) \ 1364 ((txn) && (dbi)<(txn)->mt_numdbs && ((txn)->mt_dbflags[dbi] & (validity))) 1365 1366 /** Check for misused \b dbi handles */ 1367 #define TXN_DBI_CHANGED(txn, dbi) \ 1368 ((txn)->mt_dbiseqs[dbi] != (txn)->mt_env->me_dbiseqs[dbi]) 1369 1370 static int mdb_page_alloc(MDB_cursor *mc, int num, MDB_page **mp); 1371 static int mdb_page_new(MDB_cursor *mc, uint32_t flags, int num, MDB_page **mp); 1372 static int mdb_page_touch(MDB_cursor *mc); 1373 1374 #define MDB_END_NAMES {"committed", "empty-commit", "abort", "reset", \ 1375 "reset-tmp", "fail-begin", "fail-beginchild"} 1376 enum { 1377 /* mdb_txn_end operation number, for logging */ 1378 MDB_END_COMMITTED, MDB_END_EMPTY_COMMIT, MDB_END_ABORT, MDB_END_RESET, 1379 MDB_END_RESET_TMP, MDB_END_FAIL_BEGIN, MDB_END_FAIL_BEGINCHILD 1380 }; 1381 #define MDB_END_OPMASK 0x0F /**< mask for #mdb_txn_end() operation number */ 1382 #define MDB_END_UPDATE 0x10 /**< update env state (DBIs) */ 1383 #define MDB_END_FREE 0x20 /**< free txn unless it is #MDB_env.%me_txn0 */ 1384 #define MDB_END_SLOT MDB_NOTLS /**< release any reader slot if #MDB_NOTLS */ 1385 static void mdb_txn_end(MDB_txn *txn, unsigned mode); 1386 1387 static int mdb_page_get(MDB_cursor *mc, pgno_t pgno, MDB_page **mp, int *lvl); 1388 static int mdb_page_search_root(MDB_cursor *mc, 1389 MDB_val *key, int modify); 1390 #define MDB_PS_MODIFY 1 1391 #define MDB_PS_ROOTONLY 2 1392 #define MDB_PS_FIRST 4 1393 #define MDB_PS_LAST 8 1394 static int mdb_page_search(MDB_cursor *mc, 1395 MDB_val *key, int flags); 1396 static int mdb_page_merge(MDB_cursor *csrc, MDB_cursor *cdst); 1397 1398 #define MDB_SPLIT_REPLACE MDB_APPENDDUP /**< newkey is not new */ 1399 static int mdb_page_split(MDB_cursor *mc, MDB_val *newkey, MDB_val *newdata, 1400 pgno_t newpgno, unsigned int nflags); 1401 1402 static int mdb_env_read_header(MDB_env *env, MDB_meta *meta); 1403 static MDB_meta *mdb_env_pick_meta(const MDB_env *env); 1404 static int mdb_env_write_meta(MDB_txn *txn); 1405 #if defined(MDB_USE_POSIX_MUTEX) && !defined(MDB_ROBUST_SUPPORTED) /* Drop unused excl arg */ 1406 # define mdb_env_close0(env, excl) mdb_env_close1(env) 1407 #endif 1408 static void mdb_env_close0(MDB_env *env, int excl); 1409 1410 static MDB_node *mdb_node_search(MDB_cursor *mc, MDB_val *key, int *exactp); 1411 static int mdb_node_add(MDB_cursor *mc, indx_t indx, 1412 MDB_val *key, MDB_val *data, pgno_t pgno, unsigned int flags); 1413 static void mdb_node_del(MDB_cursor *mc, int ksize); 1414 static void mdb_node_shrink(MDB_page *mp, indx_t indx); 1415 static int mdb_node_move(MDB_cursor *csrc, MDB_cursor *cdst, int fromleft); 1416 static int mdb_node_read(MDB_cursor *mc, MDB_node *leaf, MDB_val *data); 1417 static size_t mdb_leaf_size(MDB_env *env, MDB_val *key, MDB_val *data); 1418 static size_t mdb_branch_size(MDB_env *env, MDB_val *key); 1419 1420 static int mdb_rebalance(MDB_cursor *mc); 1421 static int mdb_update_key(MDB_cursor *mc, MDB_val *key); 1422 1423 static void mdb_cursor_pop(MDB_cursor *mc); 1424 static int mdb_cursor_push(MDB_cursor *mc, MDB_page *mp); 1425 1426 static int mdb_cursor_del0(MDB_cursor *mc); 1427 static int mdb_del0(MDB_txn *txn, MDB_dbi dbi, MDB_val *key, MDB_val *data, unsigned flags); 1428 static int mdb_cursor_sibling(MDB_cursor *mc, int move_right); 1429 static int mdb_cursor_next(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op); 1430 static int mdb_cursor_prev(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op); 1431 static int mdb_cursor_set(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op, 1432 int *exactp); 1433 static int mdb_cursor_first(MDB_cursor *mc, MDB_val *key, MDB_val *data); 1434 static int mdb_cursor_last(MDB_cursor *mc, MDB_val *key, MDB_val *data); 1435 1436 static void mdb_cursor_init(MDB_cursor *mc, MDB_txn *txn, MDB_dbi dbi, MDB_xcursor *mx); 1437 static void mdb_xcursor_init0(MDB_cursor *mc); 1438 static void mdb_xcursor_init1(MDB_cursor *mc, MDB_node *node); 1439 static void mdb_xcursor_init2(MDB_cursor *mc, MDB_xcursor *src_mx, int force); 1440 1441 static int mdb_drop0(MDB_cursor *mc, int subs); 1442 static void mdb_default_cmp(MDB_txn *txn, MDB_dbi dbi); 1443 static int mdb_reader_check0(MDB_env *env, int rlocked, int *dead); 1444 1445 /** @cond */ 1446 static MDB_cmp_func mdb_cmp_memn, mdb_cmp_memnr, mdb_cmp_int, mdb_cmp_cint, mdb_cmp_long; 1447 /** @endcond */ 1448 1449 /** Compare two items pointing at size_t's of unknown alignment. */ 1450 #ifdef MISALIGNED_OK 1451 # define mdb_cmp_clong mdb_cmp_long 1452 #else 1453 # define mdb_cmp_clong mdb_cmp_cint 1454 #endif 1455 1456 #ifdef _WIN32 1457 static SECURITY_DESCRIPTOR mdb_null_sd; 1458 static SECURITY_ATTRIBUTES mdb_all_sa; 1459 static int mdb_sec_inited; 1460 1461 struct MDB_name; 1462 static int utf8_to_utf16(const char *src, struct MDB_name *dst, int xtra); 1463 #endif 1464 1465 /** Return the library version info. */ 1466 char * ESECT 1467 mdb_version(int *major, int *minor, int *patch) 1468 { 1469 if (major) *major = MDB_VERSION_MAJOR; 1470 if (minor) *minor = MDB_VERSION_MINOR; 1471 if (patch) *patch = MDB_VERSION_PATCH; 1472 return MDB_VERSION_STRING; 1473 } 1474 1475 /** Table of descriptions for LMDB @ref errors */ 1476 static char *const mdb_errstr[] = { 1477 "MDB_KEYEXIST: Key/data pair already exists", 1478 "MDB_NOTFOUND: No matching key/data pair found", 1479 "MDB_PAGE_NOTFOUND: Requested page not found", 1480 "MDB_CORRUPTED: Located page was wrong type", 1481 "MDB_PANIC: Update of meta page failed or environment had fatal error", 1482 "MDB_VERSION_MISMATCH: Database environment version mismatch", 1483 "MDB_INVALID: File is not an LMDB file", 1484 "MDB_MAP_FULL: Environment mapsize limit reached", 1485 "MDB_DBS_FULL: Environment maxdbs limit reached", 1486 "MDB_READERS_FULL: Environment maxreaders limit reached", 1487 "MDB_TLS_FULL: Thread-local storage keys full - too many environments open", 1488 "MDB_TXN_FULL: Transaction has too many dirty pages - transaction too big", 1489 "MDB_CURSOR_FULL: Internal error - cursor stack limit reached", 1490 "MDB_PAGE_FULL: Internal error - page has no more space", 1491 "MDB_MAP_RESIZED: Database contents grew beyond environment mapsize", 1492 "MDB_INCOMPATIBLE: Operation and DB incompatible, or DB flags changed", 1493 "MDB_BAD_RSLOT: Invalid reuse of reader locktable slot", 1494 "MDB_BAD_TXN: Transaction must abort, has a child, or is invalid", 1495 "MDB_BAD_VALSIZE: Unsupported size of key/DB name/data, or wrong DUPFIXED size", 1496 "MDB_BAD_DBI: The specified DBI handle was closed/changed unexpectedly", 1497 }; 1498 1499 char * 1500 mdb_strerror(int err) 1501 { 1502 #ifdef _WIN32 1503 /** HACK: pad 4KB on stack over the buf. Return system msgs in buf. 1504 * This works as long as no function between the call to mdb_strerror 1505 * and the actual use of the message uses more than 4K of stack. 1506 */ 1507 #define MSGSIZE 1024 1508 #define PADSIZE 4096 1509 char buf[MSGSIZE+PADSIZE], *ptr = buf; 1510 #endif 1511 int i; 1512 if (!err) 1513 return ("Successful return: 0"); 1514 1515 if (err >= MDB_KEYEXIST && err <= MDB_LAST_ERRCODE) { 1516 i = err - MDB_KEYEXIST; 1517 return mdb_errstr[i]; 1518 } 1519 1520 #ifdef _WIN32 1521 /* These are the C-runtime error codes we use. The comment indicates 1522 * their numeric value, and the Win32 error they would correspond to 1523 * if the error actually came from a Win32 API. A major mess, we should 1524 * have used LMDB-specific error codes for everything. 1525 */ 1526 switch(err) { 1527 case ENOENT: /* 2, FILE_NOT_FOUND */ 1528 case EIO: /* 5, ACCESS_DENIED */ 1529 case ENOMEM: /* 12, INVALID_ACCESS */ 1530 case EACCES: /* 13, INVALID_DATA */ 1531 case EBUSY: /* 16, CURRENT_DIRECTORY */ 1532 case EINVAL: /* 22, BAD_COMMAND */ 1533 case ENOSPC: /* 28, OUT_OF_PAPER */ 1534 return strerror(err); 1535 default: 1536 ; 1537 } 1538 buf[0] = 0; 1539 FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM | 1540 FORMAT_MESSAGE_IGNORE_INSERTS, 1541 NULL, err, 0, ptr, MSGSIZE, (va_list *)buf+MSGSIZE); 1542 return ptr; 1543 #else 1544 if (err < 0) 1545 return "Invalid error code"; 1546 return strerror(err); 1547 #endif 1548 } 1549 1550 /** assert(3) variant in cursor context */ 1551 #define mdb_cassert(mc, expr) mdb_assert0((mc)->mc_txn->mt_env, expr, #expr) 1552 /** assert(3) variant in transaction context */ 1553 #define mdb_tassert(txn, expr) mdb_assert0((txn)->mt_env, expr, #expr) 1554 /** assert(3) variant in environment context */ 1555 #define mdb_eassert(env, expr) mdb_assert0(env, expr, #expr) 1556 1557 #ifndef NDEBUG 1558 # define mdb_assert0(env, expr, expr_txt) ((expr) ? (void)0 : \ 1559 mdb_assert_fail(env, expr_txt, mdb_func_, __FILE__, __LINE__)) 1560 1561 static void ESECT 1562 mdb_assert_fail(MDB_env *env, const char *expr_txt, 1563 const char *func, const char *file, int line) 1564 { 1565 char buf[400]; 1566 sprintf(buf, "%.100s:%d: Assertion '%.200s' failed in %.40s()", 1567 file, line, expr_txt, func); 1568 if (env->me_assert_func) 1569 env->me_assert_func(env, buf); 1570 fprintf(stderr, "%s\n", buf); 1571 abort(); 1572 } 1573 #else 1574 # define mdb_assert0(env, expr, expr_txt) ((void) 0) 1575 #endif /* NDEBUG */ 1576 1577 #if MDB_DEBUG 1578 /** Return the page number of \b mp which may be sub-page, for debug output */ 1579 static pgno_t 1580 mdb_dbg_pgno(MDB_page *mp) 1581 { 1582 pgno_t ret; 1583 COPY_PGNO(ret, MP_PGNO(mp)); 1584 return ret; 1585 } 1586 1587 /** Display a key in hexadecimal and return the address of the result. 1588 * @param[in] key the key to display 1589 * @param[in] buf the buffer to write into. Should always be #DKBUF. 1590 * @return The key in hexadecimal form. 1591 */ 1592 char * 1593 mdb_dkey(MDB_val *key, char *buf) 1594 { 1595 char *ptr = buf; 1596 unsigned char *c = key->mv_data; 1597 unsigned int i; 1598 1599 if (!key) 1600 return ""; 1601 1602 if (key->mv_size > DKBUF_MAXKEYSIZE) 1603 return "MDB_MAXKEYSIZE"; 1604 /* may want to make this a dynamic check: if the key is mostly 1605 * printable characters, print it as-is instead of converting to hex. 1606 */ 1607 #if 1 1608 buf[0] = '\0'; 1609 for (i=0; i<key->mv_size; i++) 1610 ptr += sprintf(ptr, "%02x", *c++); 1611 #else 1612 sprintf(buf, "%.*s", key->mv_size, key->mv_data); 1613 #endif 1614 return buf; 1615 } 1616 1617 static const char * 1618 mdb_leafnode_type(MDB_node *n) 1619 { 1620 static char *const tp[2][2] = {{"", ": DB"}, {": sub-page", ": sub-DB"}}; 1621 return F_ISSET(n->mn_flags, F_BIGDATA) ? ": overflow page" : 1622 tp[F_ISSET(n->mn_flags, F_DUPDATA)][F_ISSET(n->mn_flags, F_SUBDATA)]; 1623 } 1624 1625 /** Display all the keys in the page. */ 1626 void 1627 mdb_page_list(MDB_page *mp) 1628 { 1629 pgno_t pgno = mdb_dbg_pgno(mp); 1630 const char *type, *state = (MP_FLAGS(mp) & P_DIRTY) ? ", dirty" : ""; 1631 MDB_node *node; 1632 unsigned int i, nkeys, nsize, total = 0; 1633 MDB_val key; 1634 DKBUF; 1635 1636 switch (MP_FLAGS(mp) & (P_BRANCH|P_LEAF|P_LEAF2|P_META|P_OVERFLOW|P_SUBP)) { 1637 case P_BRANCH: type = "Branch page"; break; 1638 case P_LEAF: type = "Leaf page"; break; 1639 case P_LEAF|P_SUBP: type = "Sub-page"; break; 1640 case P_LEAF|P_LEAF2: type = "LEAF2 page"; break; 1641 case P_LEAF|P_LEAF2|P_SUBP: type = "LEAF2 sub-page"; break; 1642 case P_OVERFLOW: 1643 fprintf(stderr, "Overflow page %"Z"u pages %u%s\n", 1644 pgno, mp->mp_pages, state); 1645 return; 1646 case P_META: 1647 fprintf(stderr, "Meta-page %"Z"u txnid %"Z"u\n", 1648 pgno, ((MDB_meta *)METADATA(mp))->mm_txnid); 1649 return; 1650 default: 1651 fprintf(stderr, "Bad page %"Z"u flags 0x%X\n", pgno, MP_FLAGS(mp)); 1652 return; 1653 } 1654 1655 nkeys = NUMKEYS(mp); 1656 fprintf(stderr, "%s %"Z"u numkeys %d%s\n", type, pgno, nkeys, state); 1657 1658 for (i=0; i<nkeys; i++) { 1659 if (IS_LEAF2(mp)) { /* LEAF2 pages have no mp_ptrs[] or node headers */ 1660 key.mv_size = nsize = mp->mp_pad; 1661 key.mv_data = LEAF2KEY(mp, i, nsize); 1662 total += nsize; 1663 fprintf(stderr, "key %d: nsize %d, %s\n", i, nsize, DKEY(&key)); 1664 continue; 1665 } 1666 node = NODEPTR(mp, i); 1667 key.mv_size = node->mn_ksize; 1668 key.mv_data = node->mn_data; 1669 nsize = NODESIZE + key.mv_size; 1670 if (IS_BRANCH(mp)) { 1671 fprintf(stderr, "key %d: page %"Z"u, %s\n", i, NODEPGNO(node), 1672 DKEY(&key)); 1673 total += nsize; 1674 } else { 1675 if (F_ISSET(node->mn_flags, F_BIGDATA)) 1676 nsize += sizeof(pgno_t); 1677 else 1678 nsize += NODEDSZ(node); 1679 total += nsize; 1680 nsize += sizeof(indx_t); 1681 fprintf(stderr, "key %d: nsize %d, %s%s\n", 1682 i, nsize, DKEY(&key), mdb_leafnode_type(node)); 1683 } 1684 total = EVEN(total); 1685 } 1686 fprintf(stderr, "Total: header %d + contents %d + unused %d\n", 1687 IS_LEAF2(mp) ? PAGEHDRSZ : PAGEBASE + MP_LOWER(mp), total, SIZELEFT(mp)); 1688 } 1689 1690 void 1691 mdb_cursor_chk(MDB_cursor *mc) 1692 { 1693 unsigned int i; 1694 MDB_node *node; 1695 MDB_page *mp; 1696 1697 if (!mc->mc_snum || !(mc->mc_flags & C_INITIALIZED)) return; 1698 for (i=0; i<mc->mc_top; i++) { 1699 mp = mc->mc_pg[i]; 1700 node = NODEPTR(mp, mc->mc_ki[i]); 1701 if (NODEPGNO(node) != mc->mc_pg[i+1]->mp_pgno) 1702 printf("oops!\n"); 1703 } 1704 if (mc->mc_ki[i] >= NUMKEYS(mc->mc_pg[i])) 1705 printf("ack!\n"); 1706 if (XCURSOR_INITED(mc)) { 1707 node = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]); 1708 if (((node->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) && 1709 mc->mc_xcursor->mx_cursor.mc_pg[0] != NODEDATA(node)) { 1710 printf("blah!\n"); 1711 } 1712 } 1713 } 1714 #endif 1715 1716 #if (MDB_DEBUG) > 2 1717 /** Count all the pages in each DB and in the freelist 1718 * and make sure it matches the actual number of pages 1719 * being used. 1720 * All named DBs must be open for a correct count. 1721 */ 1722 static void mdb_audit(MDB_txn *txn) 1723 { 1724 MDB_cursor mc; 1725 MDB_val key, data; 1726 MDB_ID freecount, count; 1727 MDB_dbi i; 1728 int rc; 1729 1730 freecount = 0; 1731 mdb_cursor_init(&mc, txn, FREE_DBI, NULL); 1732 while ((rc = mdb_cursor_get(&mc, &key, &data, MDB_NEXT)) == 0) 1733 freecount += *(MDB_ID *)data.mv_data; 1734 mdb_tassert(txn, rc == MDB_NOTFOUND); 1735 1736 count = 0; 1737 for (i = 0; i<txn->mt_numdbs; i++) { 1738 MDB_xcursor mx; 1739 if (!(txn->mt_dbflags[i] & DB_VALID)) 1740 continue; 1741 mdb_cursor_init(&mc, txn, i, &mx); 1742 if (txn->mt_dbs[i].md_root == P_INVALID) 1743 continue; 1744 count += txn->mt_dbs[i].md_branch_pages + 1745 txn->mt_dbs[i].md_leaf_pages + 1746 txn->mt_dbs[i].md_overflow_pages; 1747 if (txn->mt_dbs[i].md_flags & MDB_DUPSORT) { 1748 rc = mdb_page_search(&mc, NULL, MDB_PS_FIRST); 1749 for (; rc == MDB_SUCCESS; rc = mdb_cursor_sibling(&mc, 1)) { 1750 unsigned j; 1751 MDB_page *mp; 1752 mp = mc.mc_pg[mc.mc_top]; 1753 for (j=0; j<NUMKEYS(mp); j++) { 1754 MDB_node *leaf = NODEPTR(mp, j); 1755 if (leaf->mn_flags & F_SUBDATA) { 1756 MDB_db db; 1757 memcpy(&db, NODEDATA(leaf), sizeof(db)); 1758 count += db.md_branch_pages + db.md_leaf_pages + 1759 db.md_overflow_pages; 1760 } 1761 } 1762 } 1763 mdb_tassert(txn, rc == MDB_NOTFOUND); 1764 } 1765 } 1766 if (freecount + count + NUM_METAS != txn->mt_next_pgno) { 1767 fprintf(stderr, "audit: %"Z"u freecount: %"Z"u count: %"Z"u total: %"Z"u next_pgno: %"Z"u\n", 1768 txn->mt_txnid, freecount, count+NUM_METAS, 1769 freecount+count+NUM_METAS, txn->mt_next_pgno); 1770 } 1771 } 1772 #endif 1773 1774 int 1775 mdb_cmp(MDB_txn *txn, MDB_dbi dbi, const MDB_val *a, const MDB_val *b) 1776 { 1777 return txn->mt_dbxs[dbi].md_cmp(a, b); 1778 } 1779 1780 int 1781 mdb_dcmp(MDB_txn *txn, MDB_dbi dbi, const MDB_val *a, const MDB_val *b) 1782 { 1783 MDB_cmp_func *dcmp = txn->mt_dbxs[dbi].md_dcmp; 1784 #if UINT_MAX < SIZE_MAX 1785 if (dcmp == mdb_cmp_int && a->mv_size == sizeof(size_t)) 1786 dcmp = mdb_cmp_clong; 1787 #endif 1788 return dcmp(a, b); 1789 } 1790 1791 /** Allocate memory for a page. 1792 * Re-use old malloc'd pages first for singletons, otherwise just malloc. 1793 * Set #MDB_TXN_ERROR on failure. 1794 */ 1795 static MDB_page * 1796 mdb_page_malloc(MDB_txn *txn, unsigned num) 1797 { 1798 MDB_env *env = txn->mt_env; 1799 MDB_page *ret = env->me_dpages; 1800 size_t psize = env->me_psize, sz = psize, off; 1801 /* For ! #MDB_NOMEMINIT, psize counts how much to init. 1802 * For a single page alloc, we init everything after the page header. 1803 * For multi-page, we init the final page; if the caller needed that 1804 * many pages they will be filling in at least up to the last page. 1805 */ 1806 if (num == 1) { 1807 if (ret) { 1808 VGMEMP_ALLOC(env, ret, sz); 1809 VGMEMP_DEFINED(ret, sizeof(ret->mp_next)); 1810 env->me_dpages = ret->mp_next; 1811 return ret; 1812 } 1813 psize -= off = PAGEHDRSZ; 1814 } else { 1815 sz *= num; 1816 off = sz - psize; 1817 } 1818 if ((ret = malloc(sz)) != NULL) { 1819 VGMEMP_ALLOC(env, ret, sz); 1820 if (!(env->me_flags & MDB_NOMEMINIT)) { 1821 memset((char *)ret + off, 0, psize); 1822 ret->mp_pad = 0; 1823 } 1824 } else { 1825 txn->mt_flags |= MDB_TXN_ERROR; 1826 } 1827 return ret; 1828 } 1829 /** Free a single page. 1830 * Saves single pages to a list, for future reuse. 1831 * (This is not used for multi-page overflow pages.) 1832 */ 1833 static void 1834 mdb_page_free(MDB_env *env, MDB_page *mp) 1835 { 1836 mp->mp_next = env->me_dpages; 1837 VGMEMP_FREE(env, mp); 1838 env->me_dpages = mp; 1839 } 1840 1841 /** Free a dirty page */ 1842 static void 1843 mdb_dpage_free(MDB_env *env, MDB_page *dp) 1844 { 1845 if (!IS_OVERFLOW(dp) || dp->mp_pages == 1) { 1846 mdb_page_free(env, dp); 1847 } else { 1848 /* large pages just get freed directly */ 1849 VGMEMP_FREE(env, dp); 1850 free(dp); 1851 } 1852 } 1853 1854 /** Return all dirty pages to dpage list */ 1855 static void 1856 mdb_dlist_free(MDB_txn *txn) 1857 { 1858 MDB_env *env = txn->mt_env; 1859 MDB_ID2L dl = txn->mt_u.dirty_list; 1860 unsigned i, n = dl[0].mid; 1861 1862 for (i = 1; i <= n; i++) { 1863 mdb_dpage_free(env, dl[i].mptr); 1864 } 1865 dl[0].mid = 0; 1866 } 1867 1868 /** Loosen or free a single page. 1869 * Saves single pages to a list for future reuse 1870 * in this same txn. It has been pulled from the freeDB 1871 * and already resides on the dirty list, but has been 1872 * deleted. Use these pages first before pulling again 1873 * from the freeDB. 1874 * 1875 * If the page wasn't dirtied in this txn, just add it 1876 * to this txn's free list. 1877 */ 1878 static int 1879 mdb_page_loose(MDB_cursor *mc, MDB_page *mp) 1880 { 1881 int loose = 0; 1882 pgno_t pgno = mp->mp_pgno; 1883 MDB_txn *txn = mc->mc_txn; 1884 1885 if ((mp->mp_flags & P_DIRTY) && mc->mc_dbi != FREE_DBI) { 1886 if (txn->mt_parent) { 1887 MDB_ID2 *dl = txn->mt_u.dirty_list; 1888 /* If txn has a parent, make sure the page is in our 1889 * dirty list. 1890 */ 1891 if (dl[0].mid) { 1892 unsigned x = mdb_mid2l_search(dl, pgno); 1893 if (x <= dl[0].mid && dl[x].mid == pgno) { 1894 if (mp != dl[x].mptr) { /* bad cursor? */ 1895 mc->mc_flags &= ~(C_INITIALIZED|C_EOF); 1896 txn->mt_flags |= MDB_TXN_ERROR; 1897 return MDB_CORRUPTED; 1898 } 1899 /* ok, it's ours */ 1900 loose = 1; 1901 } 1902 } 1903 } else { 1904 /* no parent txn, so it's just ours */ 1905 loose = 1; 1906 } 1907 } 1908 if (loose) { 1909 DPRINTF(("loosen db %d page %"Z"u", DDBI(mc), 1910 mp->mp_pgno)); 1911 NEXT_LOOSE_PAGE(mp) = txn->mt_loose_pgs; 1912 txn->mt_loose_pgs = mp; 1913 txn->mt_loose_count++; 1914 mp->mp_flags |= P_LOOSE; 1915 } else { 1916 int rc = mdb_midl_append(&txn->mt_free_pgs, pgno); 1917 if (rc) 1918 return rc; 1919 } 1920 1921 return MDB_SUCCESS; 1922 } 1923 1924 /** Set or clear P_KEEP in dirty, non-overflow, non-sub pages watched by txn. 1925 * @param[in] mc A cursor handle for the current operation. 1926 * @param[in] pflags Flags of the pages to update: 1927 * P_DIRTY to set P_KEEP, P_DIRTY|P_KEEP to clear it. 1928 * @param[in] all No shortcuts. Needed except after a full #mdb_page_flush(). 1929 * @return 0 on success, non-zero on failure. 1930 */ 1931 static int 1932 mdb_pages_xkeep(MDB_cursor *mc, unsigned pflags, int all) 1933 { 1934 enum { Mask = P_SUBP|P_DIRTY|P_LOOSE|P_KEEP }; 1935 MDB_txn *txn = mc->mc_txn; 1936 MDB_cursor *m3, *m0 = mc; 1937 MDB_xcursor *mx; 1938 MDB_page *dp, *mp; 1939 MDB_node *leaf; 1940 unsigned i, j; 1941 int rc = MDB_SUCCESS, level; 1942 1943 /* Mark pages seen by cursors */ 1944 if (mc->mc_flags & C_UNTRACK) 1945 mc = NULL; /* will find mc in mt_cursors */ 1946 for (i = txn->mt_numdbs;; mc = txn->mt_cursors[--i]) { 1947 for (; mc; mc=mc->mc_next) { 1948 if (!(mc->mc_flags & C_INITIALIZED)) 1949 continue; 1950 for (m3 = mc;; m3 = &mx->mx_cursor) { 1951 mp = NULL; 1952 for (j=0; j<m3->mc_snum; j++) { 1953 mp = m3->mc_pg[j]; 1954 if ((mp->mp_flags & Mask) == pflags) 1955 mp->mp_flags ^= P_KEEP; 1956 } 1957 mx = m3->mc_xcursor; 1958 /* Proceed to mx if it is at a sub-database */ 1959 if (! (mx && (mx->mx_cursor.mc_flags & C_INITIALIZED))) 1960 break; 1961 if (! (mp && (mp->mp_flags & P_LEAF))) 1962 break; 1963 leaf = NODEPTR(mp, m3->mc_ki[j-1]); 1964 if (!(leaf->mn_flags & F_SUBDATA)) 1965 break; 1966 } 1967 } 1968 if (i == 0) 1969 break; 1970 } 1971 1972 if (all) { 1973 /* Mark dirty root pages */ 1974 for (i=0; i<txn->mt_numdbs; i++) { 1975 if (txn->mt_dbflags[i] & DB_DIRTY) { 1976 pgno_t pgno = txn->mt_dbs[i].md_root; 1977 if (pgno == P_INVALID) 1978 continue; 1979 if ((rc = mdb_page_get(m0, pgno, &dp, &level)) != MDB_SUCCESS) 1980 break; 1981 if ((dp->mp_flags & Mask) == pflags && level <= 1) 1982 dp->mp_flags ^= P_KEEP; 1983 } 1984 } 1985 } 1986 1987 return rc; 1988 } 1989 1990 static int mdb_page_flush(MDB_txn *txn, int keep); 1991 1992 /** Spill pages from the dirty list back to disk. 1993 * This is intended to prevent running into #MDB_TXN_FULL situations, 1994 * but note that they may still occur in a few cases: 1995 * 1) our estimate of the txn size could be too small. Currently this 1996 * seems unlikely, except with a large number of #MDB_MULTIPLE items. 1997 * 2) child txns may run out of space if their parents dirtied a 1998 * lot of pages and never spilled them. TODO: we probably should do 1999 * a preemptive spill during #mdb_txn_begin() of a child txn, if 2000 * the parent's dirty_room is below a given threshold. 2001 * 2002 * Otherwise, if not using nested txns, it is expected that apps will 2003 * not run into #MDB_TXN_FULL any more. The pages are flushed to disk 2004 * the same way as for a txn commit, e.g. their P_DIRTY flag is cleared. 2005 * If the txn never references them again, they can be left alone. 2006 * If the txn only reads them, they can be used without any fuss. 2007 * If the txn writes them again, they can be dirtied immediately without 2008 * going thru all of the work of #mdb_page_touch(). Such references are 2009 * handled by #mdb_page_unspill(). 2010 * 2011 * Also note, we never spill DB root pages, nor pages of active cursors, 2012 * because we'll need these back again soon anyway. And in nested txns, 2013 * we can't spill a page in a child txn if it was already spilled in a 2014 * parent txn. That would alter the parent txns' data even though 2015 * the child hasn't committed yet, and we'd have no way to undo it if 2016 * the child aborted. 2017 * 2018 * @param[in] m0 cursor A cursor handle identifying the transaction and 2019 * database for which we are checking space. 2020 * @param[in] key For a put operation, the key being stored. 2021 * @param[in] data For a put operation, the data being stored. 2022 * @return 0 on success, non-zero on failure. 2023 */ 2024 static int 2025 mdb_page_spill(MDB_cursor *m0, MDB_val *key, MDB_val *data) 2026 { 2027 MDB_txn *txn = m0->mc_txn; 2028 MDB_page *dp; 2029 MDB_ID2L dl = txn->mt_u.dirty_list; 2030 unsigned int i, j, need; 2031 int rc; 2032 2033 if (m0->mc_flags & C_SUB) 2034 return MDB_SUCCESS; 2035 2036 /* Estimate how much space this op will take */ 2037 i = m0->mc_db->md_depth; 2038 /* Named DBs also dirty the main DB */ 2039 if (m0->mc_dbi >= CORE_DBS) 2040 i += txn->mt_dbs[MAIN_DBI].md_depth; 2041 /* For puts, roughly factor in the key+data size */ 2042 if (key) 2043 i += (LEAFSIZE(key, data) + txn->mt_env->me_psize) / txn->mt_env->me_psize; 2044 i += i; /* double it for good measure */ 2045 need = i; 2046 2047 if (txn->mt_dirty_room > i) 2048 return MDB_SUCCESS; 2049 2050 if (!txn->mt_spill_pgs) { 2051 txn->mt_spill_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX); 2052 if (!txn->mt_spill_pgs) 2053 return ENOMEM; 2054 } else { 2055 /* purge deleted slots */ 2056 MDB_IDL sl = txn->mt_spill_pgs; 2057 unsigned int num = sl[0]; 2058 j=0; 2059 for (i=1; i<=num; i++) { 2060 if (!(sl[i] & 1)) 2061 sl[++j] = sl[i]; 2062 } 2063 sl[0] = j; 2064 } 2065 2066 /* Preserve pages which may soon be dirtied again */ 2067 if ((rc = mdb_pages_xkeep(m0, P_DIRTY, 1)) != MDB_SUCCESS) 2068 goto done; 2069 2070 /* Less aggressive spill - we originally spilled the entire dirty list, 2071 * with a few exceptions for cursor pages and DB root pages. But this 2072 * turns out to be a lot of wasted effort because in a large txn many 2073 * of those pages will need to be used again. So now we spill only 1/8th 2074 * of the dirty pages. Testing revealed this to be a good tradeoff, 2075 * better than 1/2, 1/4, or 1/10. 2076 */ 2077 if (need < MDB_IDL_UM_MAX / 8) 2078 need = MDB_IDL_UM_MAX / 8; 2079 2080 /* Save the page IDs of all the pages we're flushing */ 2081 /* flush from the tail forward, this saves a lot of shifting later on. */ 2082 for (i=dl[0].mid; i && need; i--) { 2083 MDB_ID pn = dl[i].mid << 1; 2084 dp = dl[i].mptr; 2085 if (dp->mp_flags & (P_LOOSE|P_KEEP)) 2086 continue; 2087 /* Can't spill twice, make sure it's not already in a parent's 2088 * spill list. 2089 */ 2090 if (txn->mt_parent) { 2091 MDB_txn *tx2; 2092 for (tx2 = txn->mt_parent; tx2; tx2 = tx2->mt_parent) { 2093 if (tx2->mt_spill_pgs) { 2094 j = mdb_midl_search(tx2->mt_spill_pgs, pn); 2095 if (j <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[j] == pn) { 2096 dp->mp_flags |= P_KEEP; 2097 break; 2098 } 2099 } 2100 } 2101 if (tx2) 2102 continue; 2103 } 2104 if ((rc = mdb_midl_append(&txn->mt_spill_pgs, pn))) 2105 goto done; 2106 need--; 2107 } 2108 mdb_midl_sort(txn->mt_spill_pgs); 2109 2110 /* Flush the spilled part of dirty list */ 2111 if ((rc = mdb_page_flush(txn, i)) != MDB_SUCCESS) 2112 goto done; 2113 2114 /* Reset any dirty pages we kept that page_flush didn't see */ 2115 rc = mdb_pages_xkeep(m0, P_DIRTY|P_KEEP, i); 2116 2117 done: 2118 txn->mt_flags |= rc ? MDB_TXN_ERROR : MDB_TXN_SPILLS; 2119 return rc; 2120 } 2121 2122 /** Find oldest txnid still referenced. Expects txn->mt_txnid > 0. */ 2123 static txnid_t 2124 mdb_find_oldest(MDB_txn *txn) 2125 { 2126 int i; 2127 txnid_t mr, oldest = txn->mt_txnid - 1; 2128 if (txn->mt_env->me_txns) { 2129 MDB_reader *r = txn->mt_env->me_txns->mti_readers; 2130 for (i = txn->mt_env->me_txns->mti_numreaders; --i >= 0; ) { 2131 if (r[i].mr_pid) { 2132 mr = r[i].mr_txnid; 2133 if (oldest > mr) 2134 oldest = mr; 2135 } 2136 } 2137 } 2138 return oldest; 2139 } 2140 2141 /** Add a page to the txn's dirty list */ 2142 static void 2143 mdb_page_dirty(MDB_txn *txn, MDB_page *mp) 2144 { 2145 MDB_ID2 mid; 2146 int rc, (*insert)(MDB_ID2L, MDB_ID2 *); 2147 2148 if (txn->mt_flags & MDB_TXN_WRITEMAP) { 2149 insert = mdb_mid2l_append; 2150 } else { 2151 insert = mdb_mid2l_insert; 2152 } 2153 mid.mid = mp->mp_pgno; 2154 mid.mptr = mp; 2155 rc = insert(txn->mt_u.dirty_list, &mid); 2156 mdb_tassert(txn, rc == 0); 2157 txn->mt_dirty_room--; 2158 } 2159 2160 /** Allocate page numbers and memory for writing. Maintain me_pglast, 2161 * me_pghead and mt_next_pgno. Set #MDB_TXN_ERROR on failure. 2162 * 2163 * If there are free pages available from older transactions, they 2164 * are re-used first. Otherwise allocate a new page at mt_next_pgno. 2165 * Do not modify the freedB, just merge freeDB records into me_pghead[] 2166 * and move me_pglast to say which records were consumed. Only this 2167 * function can create me_pghead and move me_pglast/mt_next_pgno. 2168 * @param[in] mc cursor A cursor handle identifying the transaction and 2169 * database for which we are allocating. 2170 * @param[in] num the number of pages to allocate. 2171 * @param[out] mp Address of the allocated page(s). Requests for multiple pages 2172 * will always be satisfied by a single contiguous chunk of memory. 2173 * @return 0 on success, non-zero on failure. 2174 */ 2175 static int 2176 mdb_page_alloc(MDB_cursor *mc, int num, MDB_page **mp) 2177 { 2178 #ifdef MDB_PARANOID /* Seems like we can ignore this now */ 2179 /* Get at most <Max_retries> more freeDB records once me_pghead 2180 * has enough pages. If not enough, use new pages from the map. 2181 * If <Paranoid> and mc is updating the freeDB, only get new 2182 * records if me_pghead is empty. Then the freelist cannot play 2183 * catch-up with itself by growing while trying to save it. 2184 */ 2185 enum { Paranoid = 1, Max_retries = 500 }; 2186 #else 2187 enum { Paranoid = 0, Max_retries = INT_MAX /*infinite*/ }; 2188 #endif 2189 int rc, retry = num * 60; 2190 MDB_txn *txn = mc->mc_txn; 2191 MDB_env *env = txn->mt_env; 2192 pgno_t pgno, *mop = env->me_pghead; 2193 unsigned i, j, mop_len = mop ? mop[0] : 0, n2 = num-1; 2194 MDB_page *np; 2195 txnid_t oldest = 0, last; 2196 MDB_cursor_op op; 2197 MDB_cursor m2; 2198 int found_old = 0; 2199 2200 /* If there are any loose pages, just use them */ 2201 if (num == 1 && txn->mt_loose_pgs) { 2202 np = txn->mt_loose_pgs; 2203 txn->mt_loose_pgs = NEXT_LOOSE_PAGE(np); 2204 txn->mt_loose_count--; 2205 DPRINTF(("db %d use loose page %"Z"u", DDBI(mc), 2206 np->mp_pgno)); 2207 *mp = np; 2208 return MDB_SUCCESS; 2209 } 2210 2211 *mp = NULL; 2212 2213 /* If our dirty list is already full, we can't do anything */ 2214 if (txn->mt_dirty_room == 0) { 2215 rc = MDB_TXN_FULL; 2216 goto fail; 2217 } 2218 2219 for (op = MDB_FIRST;; op = MDB_NEXT) { 2220 MDB_val key, data; 2221 MDB_node *leaf; 2222 pgno_t *idl; 2223 2224 /* Seek a big enough contiguous page range. Prefer 2225 * pages at the tail, just truncating the list. 2226 */ 2227 if (mop_len > n2) { 2228 i = mop_len; 2229 do { 2230 pgno = mop[i]; 2231 if (mop[i-n2] == pgno+n2) 2232 goto search_done; 2233 } while (--i > n2); 2234 if (--retry < 0) 2235 break; 2236 } 2237 2238 if (op == MDB_FIRST) { /* 1st iteration */ 2239 /* Prepare to fetch more and coalesce */ 2240 last = env->me_pglast; 2241 oldest = env->me_pgoldest; 2242 mdb_cursor_init(&m2, txn, FREE_DBI, NULL); 2243 if (last) { 2244 op = MDB_SET_RANGE; 2245 key.mv_data = &last; /* will look up last+1 */ 2246 key.mv_size = sizeof(last); 2247 } 2248 if (Paranoid && mc->mc_dbi == FREE_DBI) 2249 retry = -1; 2250 } 2251 if (Paranoid && retry < 0 && mop_len) 2252 break; 2253 2254 last++; 2255 /* Do not fetch more if the record will be too recent */ 2256 if (oldest <= last) { 2257 if (!found_old) { 2258 oldest = mdb_find_oldest(txn); 2259 env->me_pgoldest = oldest; 2260 found_old = 1; 2261 } 2262 if (oldest <= last) 2263 break; 2264 } 2265 rc = mdb_cursor_get(&m2, &key, NULL, op); 2266 if (rc) { 2267 if (rc == MDB_NOTFOUND) 2268 break; 2269 goto fail; 2270 } 2271 last = *(txnid_t*)key.mv_data; 2272 if (oldest <= last) { 2273 if (!found_old) { 2274 oldest = mdb_find_oldest(txn); 2275 env->me_pgoldest = oldest; 2276 found_old = 1; 2277 } 2278 if (oldest <= last) 2279 break; 2280 } 2281 np = m2.mc_pg[m2.mc_top]; 2282 leaf = NODEPTR(np, m2.mc_ki[m2.mc_top]); 2283 if ((rc = mdb_node_read(&m2, leaf, &data)) != MDB_SUCCESS) 2284 goto fail; 2285 2286 idl = (MDB_ID *) data.mv_data; 2287 i = idl[0]; 2288 if (!mop) { 2289 if (!(env->me_pghead = mop = mdb_midl_alloc(i))) { 2290 rc = ENOMEM; 2291 goto fail; 2292 } 2293 } else { 2294 if ((rc = mdb_midl_need(&env->me_pghead, i)) != 0) 2295 goto fail; 2296 mop = env->me_pghead; 2297 } 2298 env->me_pglast = last; 2299 #if (MDB_DEBUG) > 1 2300 DPRINTF(("IDL read txn %"Z"u root %"Z"u num %u", 2301 last, txn->mt_dbs[FREE_DBI].md_root, i)); 2302 for (j = i; j; j--) 2303 DPRINTF(("IDL %"Z"u", idl[j])); 2304 #endif 2305 /* Merge in descending sorted order */ 2306 mdb_midl_xmerge(mop, idl); 2307 mop_len = mop[0]; 2308 } 2309 2310 /* Use new pages from the map when nothing suitable in the freeDB */ 2311 i = 0; 2312 pgno = txn->mt_next_pgno; 2313 if (pgno + num >= env->me_maxpg) { 2314 DPUTS("DB size maxed out"); 2315 rc = MDB_MAP_FULL; 2316 goto fail; 2317 } 2318 2319 search_done: 2320 if (env->me_flags & MDB_WRITEMAP) { 2321 np = (MDB_page *)(env->me_map + env->me_psize * pgno); 2322 } else { 2323 if (!(np = mdb_page_malloc(txn, num))) { 2324 rc = ENOMEM; 2325 goto fail; 2326 } 2327 } 2328 if (i) { 2329 mop[0] = mop_len -= num; 2330 /* Move any stragglers down */ 2331 for (j = i-num; j < mop_len; ) 2332 mop[++j] = mop[++i]; 2333 } else { 2334 txn->mt_next_pgno = pgno + num; 2335 } 2336 np->mp_pgno = pgno; 2337 mdb_page_dirty(txn, np); 2338 *mp = np; 2339 2340 return MDB_SUCCESS; 2341 2342 fail: 2343 txn->mt_flags |= MDB_TXN_ERROR; 2344 return rc; 2345 } 2346 2347 /** Copy the used portions of a non-overflow page. 2348 * @param[in] dst page to copy into 2349 * @param[in] src page to copy from 2350 * @param[in] psize size of a page 2351 */ 2352 static void 2353 mdb_page_copy(MDB_page *dst, MDB_page *src, unsigned int psize) 2354 { 2355 enum { Align = sizeof(pgno_t) }; 2356 indx_t upper = src->mp_upper, lower = src->mp_lower, unused = upper-lower; 2357 2358 /* If page isn't full, just copy the used portion. Adjust 2359 * alignment so memcpy may copy words instead of bytes. 2360 */ 2361 if ((unused &= -Align) && !IS_LEAF2(src)) { 2362 upper = (upper + PAGEBASE) & -Align; 2363 memcpy(dst, src, (lower + PAGEBASE + (Align-1)) & -Align); 2364 memcpy((pgno_t *)((char *)dst+upper), (pgno_t *)((char *)src+upper), 2365 psize - upper); 2366 } else { 2367 memcpy(dst, src, psize - unused); 2368 } 2369 } 2370 2371 /** Pull a page off the txn's spill list, if present. 2372 * If a page being referenced was spilled to disk in this txn, bring 2373 * it back and make it dirty/writable again. 2374 * @param[in] txn the transaction handle. 2375 * @param[in] mp the page being referenced. It must not be dirty. 2376 * @param[out] ret the writable page, if any. ret is unchanged if 2377 * mp wasn't spilled. 2378 */ 2379 static int 2380 mdb_page_unspill(MDB_txn *txn, MDB_page *mp, MDB_page **ret) 2381 { 2382 MDB_env *env = txn->mt_env; 2383 const MDB_txn *tx2; 2384 unsigned x; 2385 pgno_t pgno = mp->mp_pgno, pn = pgno << 1; 2386 2387 for (tx2 = txn; tx2; tx2=tx2->mt_parent) { 2388 if (!tx2->mt_spill_pgs) 2389 continue; 2390 x = mdb_midl_search(tx2->mt_spill_pgs, pn); 2391 if (x <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[x] == pn) { 2392 MDB_page *np; 2393 int num; 2394 if (txn->mt_dirty_room == 0) 2395 return MDB_TXN_FULL; 2396 if (IS_OVERFLOW(mp)) 2397 num = mp->mp_pages; 2398 else 2399 num = 1; 2400 if (env->me_flags & MDB_WRITEMAP) { 2401 np = mp; 2402 } else { 2403 np = mdb_page_malloc(txn, num); 2404 if (!np) 2405 return ENOMEM; 2406 if (num > 1) 2407 memcpy(np, mp, num * env->me_psize); 2408 else 2409 mdb_page_copy(np, mp, env->me_psize); 2410 } 2411 if (tx2 == txn) { 2412 /* If in current txn, this page is no longer spilled. 2413 * If it happens to be the last page, truncate the spill list. 2414 * Otherwise mark it as deleted by setting the LSB. 2415 */ 2416 if (x == txn->mt_spill_pgs[0]) 2417 txn->mt_spill_pgs[0]--; 2418 else 2419 txn->mt_spill_pgs[x] |= 1; 2420 } /* otherwise, if belonging to a parent txn, the 2421 * page remains spilled until child commits 2422 */ 2423 2424 mdb_page_dirty(txn, np); 2425 np->mp_flags |= P_DIRTY; 2426 *ret = np; 2427 break; 2428 } 2429 } 2430 return MDB_SUCCESS; 2431 } 2432 2433 /** Touch a page: make it dirty and re-insert into tree with updated pgno. 2434 * Set #MDB_TXN_ERROR on failure. 2435 * @param[in] mc cursor pointing to the page to be touched 2436 * @return 0 on success, non-zero on failure. 2437 */ 2438 static int 2439 mdb_page_touch(MDB_cursor *mc) 2440 { 2441 MDB_page *mp = mc->mc_pg[mc->mc_top], *np; 2442 MDB_txn *txn = mc->mc_txn; 2443 MDB_cursor *m2, *m3; 2444 pgno_t pgno; 2445 int rc; 2446 2447 if (!F_ISSET(MP_FLAGS(mp), P_DIRTY)) { 2448 if (txn->mt_flags & MDB_TXN_SPILLS) { 2449 np = NULL; 2450 rc = mdb_page_unspill(txn, mp, &np); 2451 if (rc) 2452 goto fail; 2453 if (np) 2454 goto done; 2455 } 2456 if ((rc = mdb_midl_need(&txn->mt_free_pgs, 1)) || 2457 (rc = mdb_page_alloc(mc, 1, &np))) 2458 goto fail; 2459 pgno = np->mp_pgno; 2460 DPRINTF(("touched db %d page %"Z"u -> %"Z"u", DDBI(mc), 2461 mp->mp_pgno, pgno)); 2462 mdb_cassert(mc, mp->mp_pgno != pgno); 2463 mdb_midl_xappend(txn->mt_free_pgs, mp->mp_pgno); 2464 /* Update the parent page, if any, to point to the new page */ 2465 if (mc->mc_top) { 2466 MDB_page *parent = mc->mc_pg[mc->mc_top-1]; 2467 MDB_node *node = NODEPTR(parent, mc->mc_ki[mc->mc_top-1]); 2468 SETPGNO(node, pgno); 2469 } else { 2470 mc->mc_db->md_root = pgno; 2471 } 2472 } else if (txn->mt_parent && !IS_SUBP(mp)) { 2473 MDB_ID2 mid, *dl = txn->mt_u.dirty_list; 2474 pgno = mp->mp_pgno; 2475 /* If txn has a parent, make sure the page is in our 2476 * dirty list. 2477 */ 2478 if (dl[0].mid) { 2479 unsigned x = mdb_mid2l_search(dl, pgno); 2480 if (x <= dl[0].mid && dl[x].mid == pgno) { 2481 if (mp != dl[x].mptr) { /* bad cursor? */ 2482 mc->mc_flags &= ~(C_INITIALIZED|C_EOF); 2483 txn->mt_flags |= MDB_TXN_ERROR; 2484 return MDB_CORRUPTED; 2485 } 2486 return 0; 2487 } 2488 } 2489 mdb_cassert(mc, dl[0].mid < MDB_IDL_UM_MAX); 2490 /* No - copy it */ 2491 np = mdb_page_malloc(txn, 1); 2492 if (!np) 2493 return ENOMEM; 2494 mid.mid = pgno; 2495 mid.mptr = np; 2496 rc = mdb_mid2l_insert(dl, &mid); 2497 mdb_cassert(mc, rc == 0); 2498 } else { 2499 return 0; 2500 } 2501 2502 mdb_page_copy(np, mp, txn->mt_env->me_psize); 2503 np->mp_pgno = pgno; 2504 np->mp_flags |= P_DIRTY; 2505 2506 done: 2507 /* Adjust cursors pointing to mp */ 2508 mc->mc_pg[mc->mc_top] = np; 2509 m2 = txn->mt_cursors[mc->mc_dbi]; 2510 if (mc->mc_flags & C_SUB) { 2511 for (; m2; m2=m2->mc_next) { 2512 m3 = &m2->mc_xcursor->mx_cursor; 2513 if (m3->mc_snum < mc->mc_snum) continue; 2514 if (m3->mc_pg[mc->mc_top] == mp) 2515 m3->mc_pg[mc->mc_top] = np; 2516 } 2517 } else { 2518 for (; m2; m2=m2->mc_next) { 2519 if (m2->mc_snum < mc->mc_snum) continue; 2520 if (m2 == mc) continue; 2521 if (m2->mc_pg[mc->mc_top] == mp) { 2522 m2->mc_pg[mc->mc_top] = np; 2523 if (IS_LEAF(np)) 2524 XCURSOR_REFRESH(m2, mc->mc_top, np); 2525 } 2526 } 2527 } 2528 return 0; 2529 2530 fail: 2531 txn->mt_flags |= MDB_TXN_ERROR; 2532 return rc; 2533 } 2534 2535 int 2536 mdb_env_sync(MDB_env *env, int force) 2537 { 2538 int rc = 0; 2539 if (env->me_flags & MDB_RDONLY) 2540 return EACCES; 2541 if (force || !F_ISSET(env->me_flags, MDB_NOSYNC)) { 2542 if (env->me_flags & MDB_WRITEMAP) { 2543 int flags = ((env->me_flags & MDB_MAPASYNC) && !force) 2544 ? MS_ASYNC : MS_SYNC; 2545 if (MDB_MSYNC(env->me_map, env->me_mapsize, flags)) 2546 rc = ErrCode(); 2547 #ifdef _WIN32 2548 else if (flags == MS_SYNC && MDB_FDATASYNC(env->me_fd)) 2549 rc = ErrCode(); 2550 #endif 2551 } else { 2552 #ifdef BROKEN_FDATASYNC 2553 if (env->me_flags & MDB_FSYNCONLY) { 2554 if (fsync(env->me_fd)) 2555 rc = ErrCode(); 2556 } else 2557 #endif 2558 if (MDB_FDATASYNC(env->me_fd)) 2559 rc = ErrCode(); 2560 } 2561 } 2562 return rc; 2563 } 2564 2565 /** Back up parent txn's cursors, then grab the originals for tracking */ 2566 static int 2567 mdb_cursor_shadow(MDB_txn *src, MDB_txn *dst) 2568 { 2569 MDB_cursor *mc, *bk; 2570 MDB_xcursor *mx; 2571 size_t size; 2572 int i; 2573 2574 for (i = src->mt_numdbs; --i >= 0; ) { 2575 if ((mc = src->mt_cursors[i]) != NULL) { 2576 size = sizeof(MDB_cursor); 2577 if (mc->mc_xcursor) 2578 size += sizeof(MDB_xcursor); 2579 for (; mc; mc = bk->mc_next) { 2580 bk = malloc(size); 2581 if (!bk) 2582 return ENOMEM; 2583 *bk = *mc; 2584 mc->mc_backup = bk; 2585 mc->mc_db = &dst->mt_dbs[i]; 2586 /* Kill pointers into src to reduce abuse: The 2587 * user may not use mc until dst ends. But we need a valid 2588 * txn pointer here for cursor fixups to keep working. 2589 */ 2590 mc->mc_txn = dst; 2591 mc->mc_dbflag = &dst->mt_dbflags[i]; 2592 if ((mx = mc->mc_xcursor) != NULL) { 2593 *(MDB_xcursor *)(bk+1) = *mx; 2594 mx->mx_cursor.mc_txn = dst; 2595 } 2596 mc->mc_next = dst->mt_cursors[i]; 2597 dst->mt_cursors[i] = mc; 2598 } 2599 } 2600 } 2601 return MDB_SUCCESS; 2602 } 2603 2604 /** Close this write txn's cursors, give parent txn's cursors back to parent. 2605 * @param[in] txn the transaction handle. 2606 * @param[in] merge true to keep changes to parent cursors, false to revert. 2607 * @return 0 on success, non-zero on failure. 2608 */ 2609 static void 2610 mdb_cursors_close(MDB_txn *txn, unsigned merge) 2611 { 2612 MDB_cursor **cursors = txn->mt_cursors, *mc, *next, *bk; 2613 MDB_xcursor *mx; 2614 int i; 2615 2616 for (i = txn->mt_numdbs; --i >= 0; ) { 2617 for (mc = cursors[i]; mc; mc = next) { 2618 next = mc->mc_next; 2619 if ((bk = mc->mc_backup) != NULL) { 2620 if (merge) { 2621 /* Commit changes to parent txn */ 2622 mc->mc_next = bk->mc_next; 2623 mc->mc_backup = bk->mc_backup; 2624 mc->mc_txn = bk->mc_txn; 2625 mc->mc_db = bk->mc_db; 2626 mc->mc_dbflag = bk->mc_dbflag; 2627 if ((mx = mc->mc_xcursor) != NULL) 2628 mx->mx_cursor.mc_txn = bk->mc_txn; 2629 } else { 2630 /* Abort nested txn */ 2631 *mc = *bk; 2632 if ((mx = mc->mc_xcursor) != NULL) 2633 *mx = *(MDB_xcursor *)(bk+1); 2634 } 2635 mc = bk; 2636 } 2637 /* Only malloced cursors are permanently tracked. */ 2638 free(mc); 2639 } 2640 cursors[i] = NULL; 2641 } 2642 } 2643 2644 #if !(MDB_PIDLOCK) /* Currently the same as defined(_WIN32) */ 2645 enum Pidlock_op { 2646 Pidset, Pidcheck 2647 }; 2648 #else 2649 enum Pidlock_op { 2650 Pidset = F_SETLK, Pidcheck = F_GETLK 2651 }; 2652 #endif 2653 2654 /** Set or check a pid lock. Set returns 0 on success. 2655 * Check returns 0 if the process is certainly dead, nonzero if it may 2656 * be alive (the lock exists or an error happened so we do not know). 2657 * 2658 * On Windows Pidset is a no-op, we merely check for the existence 2659 * of the process with the given pid. On POSIX we use a single byte 2660 * lock on the lockfile, set at an offset equal to the pid. 2661 */ 2662 static int 2663 mdb_reader_pid(MDB_env *env, enum Pidlock_op op, MDB_PID_T pid) 2664 { 2665 #if !(MDB_PIDLOCK) /* Currently the same as defined(_WIN32) */ 2666 int ret = 0; 2667 HANDLE h; 2668 if (op == Pidcheck) { 2669 h = OpenProcess(env->me_pidquery, FALSE, pid); 2670 /* No documented "no such process" code, but other program use this: */ 2671 if (!h) 2672 return ErrCode() != ERROR_INVALID_PARAMETER; 2673 /* A process exists until all handles to it close. Has it exited? */ 2674 ret = WaitForSingleObject(h, 0) != 0; 2675 CloseHandle(h); 2676 } 2677 return ret; 2678 #else 2679 for (;;) { 2680 int rc; 2681 struct flock lock_info; 2682 memset(&lock_info, 0, sizeof(lock_info)); 2683 lock_info.l_type = F_WRLCK; 2684 lock_info.l_whence = SEEK_SET; 2685 lock_info.l_start = pid; 2686 lock_info.l_len = 1; 2687 if ((rc = fcntl(env->me_lfd, op, &lock_info)) == 0) { 2688 if (op == F_GETLK && lock_info.l_type != F_UNLCK) 2689 rc = -1; 2690 } else if ((rc = ErrCode()) == EINTR) { 2691 continue; 2692 } 2693 return rc; 2694 } 2695 #endif 2696 } 2697 2698 /** Common code for #mdb_txn_begin() and #mdb_txn_renew(). 2699 * @param[in] txn the transaction handle to initialize 2700 * @return 0 on success, non-zero on failure. 2701 */ 2702 static int 2703 mdb_txn_renew0(MDB_txn *txn) 2704 { 2705 MDB_env *env = txn->mt_env; 2706 MDB_txninfo *ti = env->me_txns; 2707 MDB_meta *meta; 2708 unsigned int i, nr, flags = txn->mt_flags; 2709 uint16_t x; 2710 int rc, new_notls = 0; 2711 2712 if ((flags &= MDB_TXN_RDONLY) != 0) { 2713 if (!ti) { 2714 meta = mdb_env_pick_meta(env); 2715 txn->mt_txnid = meta->mm_txnid; 2716 txn->mt_u.reader = NULL; 2717 } else { 2718 MDB_reader *r = (env->me_flags & MDB_NOTLS) ? txn->mt_u.reader : 2719 pthread_getspecific(env->me_txkey); 2720 if (r) { 2721 if (r->mr_pid != env->me_pid || r->mr_txnid != (txnid_t)-1) 2722 return MDB_BAD_RSLOT; 2723 } else { 2724 MDB_PID_T pid = env->me_pid; 2725 MDB_THR_T tid = pthread_self(); 2726 mdb_mutexref_t rmutex = env->me_rmutex; 2727 2728 if (!env->me_live_reader) { 2729 rc = mdb_reader_pid(env, Pidset, pid); 2730 if (rc) 2731 return rc; 2732 env->me_live_reader = 1; 2733 } 2734 2735 if (LOCK_MUTEX(rc, env, rmutex)) 2736 return rc; 2737 nr = ti->mti_numreaders; 2738 for (i=0; i<nr; i++) 2739 if (ti->mti_readers[i].mr_pid == 0) 2740 break; 2741 if (i == env->me_maxreaders) { 2742 UNLOCK_MUTEX(rmutex); 2743 return MDB_READERS_FULL; 2744 } 2745 r = &ti->mti_readers[i]; 2746 /* Claim the reader slot, carefully since other code 2747 * uses the reader table un-mutexed: First reset the 2748 * slot, next publish it in mti_numreaders. After 2749 * that, it is safe for mdb_env_close() to touch it. 2750 * When it will be closed, we can finally claim it. 2751 */ 2752 r->mr_pid = 0; 2753 r->mr_txnid = (txnid_t)-1; 2754 r->mr_tid = tid; 2755 if (i == nr) 2756 ti->mti_numreaders = ++nr; 2757 env->me_close_readers = nr; 2758 r->mr_pid = pid; 2759 UNLOCK_MUTEX(rmutex); 2760 2761 new_notls = (env->me_flags & MDB_NOTLS); 2762 if (!new_notls && (rc=pthread_setspecific(env->me_txkey, r))) { 2763 r->mr_pid = 0; 2764 return rc; 2765 } 2766 } 2767 do /* LY: Retry on a race, ITS#7970. */ 2768 r->mr_txnid = ti->mti_txnid; 2769 while(r->mr_txnid != ti->mti_txnid); 2770 txn->mt_txnid = r->mr_txnid; 2771 txn->mt_u.reader = r; 2772 meta = env->me_metas[txn->mt_txnid & 1]; 2773 } 2774 2775 } else { 2776 /* Not yet touching txn == env->me_txn0, it may be active */ 2777 if (ti) { 2778 if (LOCK_MUTEX(rc, env, env->me_wmutex)) 2779 return rc; 2780 txn->mt_txnid = ti->mti_txnid; 2781 meta = env->me_metas[txn->mt_txnid & 1]; 2782 } else { 2783 meta = mdb_env_pick_meta(env); 2784 txn->mt_txnid = meta->mm_txnid; 2785 } 2786 txn->mt_txnid++; 2787 #if MDB_DEBUG 2788 if (txn->mt_txnid == mdb_debug_start) 2789 mdb_debug = 1; 2790 #endif 2791 txn->mt_child = NULL; 2792 txn->mt_loose_pgs = NULL; 2793 txn->mt_loose_count = 0; 2794 txn->mt_dirty_room = MDB_IDL_UM_MAX; 2795 txn->mt_u.dirty_list = env->me_dirty_list; 2796 txn->mt_u.dirty_list[0].mid = 0; 2797 txn->mt_free_pgs = env->me_free_pgs; 2798 txn->mt_free_pgs[0] = 0; 2799 txn->mt_spill_pgs = NULL; 2800 env->me_txn = txn; 2801 memcpy(txn->mt_dbiseqs, env->me_dbiseqs, env->me_maxdbs * sizeof(unsigned int)); 2802 } 2803 2804 /* Copy the DB info and flags */ 2805 memcpy(txn->mt_dbs, meta->mm_dbs, CORE_DBS * sizeof(MDB_db)); 2806 2807 /* Moved to here to avoid a data race in read TXNs */ 2808 txn->mt_next_pgno = meta->mm_last_pg+1; 2809 2810 txn->mt_flags = flags; 2811 2812 /* Setup db info */ 2813 txn->mt_numdbs = env->me_numdbs; 2814 for (i=CORE_DBS; i<txn->mt_numdbs; i++) { 2815 x = env->me_dbflags[i]; 2816 txn->mt_dbs[i].md_flags = x & PERSISTENT_FLAGS; 2817 txn->mt_dbflags[i] = (x & MDB_VALID) ? DB_VALID|DB_USRVALID|DB_STALE : 0; 2818 } 2819 txn->mt_dbflags[MAIN_DBI] = DB_VALID|DB_USRVALID; 2820 txn->mt_dbflags[FREE_DBI] = DB_VALID; 2821 2822 if (env->me_flags & MDB_FATAL_ERROR) { 2823 DPUTS("environment had fatal error, must shutdown!"); 2824 rc = MDB_PANIC; 2825 } else if (env->me_maxpg < txn->mt_next_pgno) { 2826 rc = MDB_MAP_RESIZED; 2827 } else { 2828 return MDB_SUCCESS; 2829 } 2830 mdb_txn_end(txn, new_notls /*0 or MDB_END_SLOT*/ | MDB_END_FAIL_BEGIN); 2831 return rc; 2832 } 2833 2834 int 2835 mdb_txn_renew(MDB_txn *txn) 2836 { 2837 int rc; 2838 2839 if (!txn || !F_ISSET(txn->mt_flags, MDB_TXN_RDONLY|MDB_TXN_FINISHED)) 2840 return EINVAL; 2841 2842 rc = mdb_txn_renew0(txn); 2843 if (rc == MDB_SUCCESS) { 2844 DPRINTF(("renew txn %"Z"u%c %p on mdbenv %p, root page %"Z"u", 2845 txn->mt_txnid, (txn->mt_flags & MDB_TXN_RDONLY) ? 'r' : 'w', 2846 (void *)txn, (void *)txn->mt_env, txn->mt_dbs[MAIN_DBI].md_root)); 2847 } 2848 return rc; 2849 } 2850 2851 int 2852 mdb_txn_begin(MDB_env *env, MDB_txn *parent, unsigned int flags, MDB_txn **ret) 2853 { 2854 MDB_txn *txn; 2855 MDB_ntxn *ntxn; 2856 int rc, size, tsize; 2857 2858 flags &= MDB_TXN_BEGIN_FLAGS; 2859 flags |= env->me_flags & MDB_WRITEMAP; 2860 2861 if (env->me_flags & MDB_RDONLY & ~flags) /* write txn in RDONLY env */ 2862 return EACCES; 2863 2864 if (parent) { 2865 /* Nested transactions: Max 1 child, write txns only, no writemap */ 2866 flags |= parent->mt_flags; 2867 if (flags & (MDB_RDONLY|MDB_WRITEMAP|MDB_TXN_BLOCKED)) { 2868 return (parent->mt_flags & MDB_TXN_RDONLY) ? EINVAL : MDB_BAD_TXN; 2869 } 2870 /* Child txns save MDB_pgstate and use own copy of cursors */ 2871 size = env->me_maxdbs * (sizeof(MDB_db)+sizeof(MDB_cursor *)+1); 2872 size += tsize = sizeof(MDB_ntxn); 2873 } else if (flags & MDB_RDONLY) { 2874 size = env->me_maxdbs * (sizeof(MDB_db)+1); 2875 size += tsize = sizeof(MDB_txn); 2876 } else { 2877 /* Reuse preallocated write txn. However, do not touch it until 2878 * mdb_txn_renew0() succeeds, since it currently may be active. 2879 */ 2880 txn = env->me_txn0; 2881 goto renew; 2882 } 2883 if ((txn = calloc(1, size)) == NULL) { 2884 DPRINTF(("calloc: %s", strerror(errno))); 2885 return ENOMEM; 2886 } 2887 txn->mt_dbxs = env->me_dbxs; /* static */ 2888 txn->mt_dbs = (MDB_db *) ((char *)txn + tsize); 2889 txn->mt_dbflags = (unsigned char *)txn + size - env->me_maxdbs; 2890 txn->mt_flags = flags; 2891 txn->mt_env = env; 2892 2893 if (parent) { 2894 unsigned int i; 2895 txn->mt_cursors = (MDB_cursor **)(txn->mt_dbs + env->me_maxdbs); 2896 txn->mt_dbiseqs = parent->mt_dbiseqs; 2897 txn->mt_u.dirty_list = malloc(sizeof(MDB_ID2)*MDB_IDL_UM_SIZE); 2898 if (!txn->mt_u.dirty_list || 2899 !(txn->mt_free_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX))) 2900 { 2901 free(txn->mt_u.dirty_list); 2902 free(txn); 2903 return ENOMEM; 2904 } 2905 txn->mt_txnid = parent->mt_txnid; 2906 txn->mt_dirty_room = parent->mt_dirty_room; 2907 txn->mt_u.dirty_list[0].mid = 0; 2908 txn->mt_spill_pgs = NULL; 2909 txn->mt_next_pgno = parent->mt_next_pgno; 2910 parent->mt_flags |= MDB_TXN_HAS_CHILD; 2911 parent->mt_child = txn; 2912 txn->mt_parent = parent; 2913 txn->mt_numdbs = parent->mt_numdbs; 2914 memcpy(txn->mt_dbs, parent->mt_dbs, txn->mt_numdbs * sizeof(MDB_db)); 2915 /* Copy parent's mt_dbflags, but clear DB_NEW */ 2916 for (i=0; i<txn->mt_numdbs; i++) 2917 txn->mt_dbflags[i] = parent->mt_dbflags[i] & ~DB_NEW; 2918 rc = 0; 2919 ntxn = (MDB_ntxn *)txn; 2920 ntxn->mnt_pgstate = env->me_pgstate; /* save parent me_pghead & co */ 2921 if (env->me_pghead) { 2922 size = MDB_IDL_SIZEOF(env->me_pghead); 2923 env->me_pghead = mdb_midl_alloc(env->me_pghead[0]); 2924 if (env->me_pghead) 2925 memcpy(env->me_pghead, ntxn->mnt_pgstate.mf_pghead, size); 2926 else 2927 rc = ENOMEM; 2928 } 2929 if (!rc) 2930 rc = mdb_cursor_shadow(parent, txn); 2931 if (rc) 2932 mdb_txn_end(txn, MDB_END_FAIL_BEGINCHILD); 2933 } else { /* MDB_RDONLY */ 2934 txn->mt_dbiseqs = env->me_dbiseqs; 2935 renew: 2936 rc = mdb_txn_renew0(txn); 2937 } 2938 if (rc) { 2939 if (txn != env->me_txn0) 2940 free(txn); 2941 } else { 2942 txn->mt_flags |= flags; /* could not change txn=me_txn0 earlier */ 2943 *ret = txn; 2944 DPRINTF(("begin txn %"Z"u%c %p on mdbenv %p, root page %"Z"u", 2945 txn->mt_txnid, (flags & MDB_RDONLY) ? 'r' : 'w', 2946 (void *) txn, (void *) env, txn->mt_dbs[MAIN_DBI].md_root)); 2947 } 2948 2949 return rc; 2950 } 2951 2952 MDB_env * 2953 mdb_txn_env(MDB_txn *txn) 2954 { 2955 if(!txn) return NULL; 2956 return txn->mt_env; 2957 } 2958 2959 size_t 2960 mdb_txn_id(MDB_txn *txn) 2961 { 2962 if(!txn) return 0; 2963 return txn->mt_txnid; 2964 } 2965 2966 /** Export or close DBI handles opened in this txn. */ 2967 static void 2968 mdb_dbis_update(MDB_txn *txn, int keep) 2969 { 2970 int i; 2971 MDB_dbi n = txn->mt_numdbs; 2972 MDB_env *env = txn->mt_env; 2973 unsigned char *tdbflags = txn->mt_dbflags; 2974 2975 for (i = n; --i >= CORE_DBS;) { 2976 if (tdbflags[i] & DB_NEW) { 2977 if (keep) { 2978 env->me_dbflags[i] = txn->mt_dbs[i].md_flags | MDB_VALID; 2979 } else { 2980 char *ptr = env->me_dbxs[i].md_name.mv_data; 2981 if (ptr) { 2982 env->me_dbxs[i].md_name.mv_data = NULL; 2983 env->me_dbxs[i].md_name.mv_size = 0; 2984 env->me_dbflags[i] = 0; 2985 env->me_dbiseqs[i]++; 2986 free(ptr); 2987 } 2988 } 2989 } 2990 } 2991 if (keep && env->me_numdbs < n) 2992 env->me_numdbs = n; 2993 } 2994 2995 /** End a transaction, except successful commit of a nested transaction. 2996 * May be called twice for readonly txns: First reset it, then abort. 2997 * @param[in] txn the transaction handle to end 2998 * @param[in] mode why and how to end the transaction 2999 */ 3000 static void 3001 mdb_txn_end(MDB_txn *txn, unsigned mode) 3002 { 3003 MDB_env *env = txn->mt_env; 3004 #if MDB_DEBUG 3005 static const char *const names[] = MDB_END_NAMES; 3006 #endif 3007 3008 /* Export or close DBI handles opened in this txn */ 3009 mdb_dbis_update(txn, mode & MDB_END_UPDATE); 3010 3011 DPRINTF(("%s txn %"Z"u%c %p on mdbenv %p, root page %"Z"u", 3012 names[mode & MDB_END_OPMASK], 3013 txn->mt_txnid, (txn->mt_flags & MDB_TXN_RDONLY) ? 'r' : 'w', 3014 (void *) txn, (void *)env, txn->mt_dbs[MAIN_DBI].md_root)); 3015 3016 if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) { 3017 if (txn->mt_u.reader) { 3018 txn->mt_u.reader->mr_txnid = (txnid_t)-1; 3019 if (!(env->me_flags & MDB_NOTLS)) { 3020 txn->mt_u.reader = NULL; /* txn does not own reader */ 3021 } else if (mode & MDB_END_SLOT) { 3022 txn->mt_u.reader->mr_pid = 0; 3023 txn->mt_u.reader = NULL; 3024 } /* else txn owns the slot until it does MDB_END_SLOT */ 3025 } 3026 txn->mt_numdbs = 0; /* prevent further DBI activity */ 3027 txn->mt_flags |= MDB_TXN_FINISHED; 3028 3029 } else if (!F_ISSET(txn->mt_flags, MDB_TXN_FINISHED)) { 3030 pgno_t *pghead = env->me_pghead; 3031 3032 if (!(mode & MDB_END_UPDATE)) /* !(already closed cursors) */ 3033 mdb_cursors_close(txn, 0); 3034 if (!(env->me_flags & MDB_WRITEMAP)) { 3035 mdb_dlist_free(txn); 3036 } 3037 3038 txn->mt_numdbs = 0; 3039 txn->mt_flags = MDB_TXN_FINISHED; 3040 3041 if (!txn->mt_parent) { 3042 mdb_midl_shrink(&txn->mt_free_pgs); 3043 env->me_free_pgs = txn->mt_free_pgs; 3044 /* me_pgstate: */ 3045 env->me_pghead = NULL; 3046 env->me_pglast = 0; 3047 3048 env->me_txn = NULL; 3049 mode = 0; /* txn == env->me_txn0, do not free() it */ 3050 3051 /* The writer mutex was locked in mdb_txn_begin. */ 3052 if (env->me_txns) 3053 UNLOCK_MUTEX(env->me_wmutex); 3054 } else { 3055 txn->mt_parent->mt_child = NULL; 3056 txn->mt_parent->mt_flags &= ~MDB_TXN_HAS_CHILD; 3057 env->me_pgstate = ((MDB_ntxn *)txn)->mnt_pgstate; 3058 mdb_midl_free(txn->mt_free_pgs); 3059 free(txn->mt_u.dirty_list); 3060 } 3061 mdb_midl_free(txn->mt_spill_pgs); 3062 3063 mdb_midl_free(pghead); 3064 } 3065 3066 if (mode & MDB_END_FREE) 3067 free(txn); 3068 } 3069 3070 void 3071 mdb_txn_reset(MDB_txn *txn) 3072 { 3073 if (txn == NULL) 3074 return; 3075 3076 /* This call is only valid for read-only txns */ 3077 if (!(txn->mt_flags & MDB_TXN_RDONLY)) 3078 return; 3079 3080 mdb_txn_end(txn, MDB_END_RESET); 3081 } 3082 3083 void 3084 mdb_txn_abort(MDB_txn *txn) 3085 { 3086 if (txn == NULL) 3087 return; 3088 3089 if (txn->mt_child) 3090 mdb_txn_abort(txn->mt_child); 3091 3092 mdb_txn_end(txn, MDB_END_ABORT|MDB_END_SLOT|MDB_END_FREE); 3093 } 3094 3095 /** Save the freelist as of this transaction to the freeDB. 3096 * This changes the freelist. Keep trying until it stabilizes. 3097 */ 3098 static int 3099 mdb_freelist_save(MDB_txn *txn) 3100 { 3101 /* env->me_pghead[] can grow and shrink during this call. 3102 * env->me_pglast and txn->mt_free_pgs[] can only grow. 3103 * Page numbers cannot disappear from txn->mt_free_pgs[]. 3104 */ 3105 MDB_cursor mc; 3106 MDB_env *env = txn->mt_env; 3107 int rc, maxfree_1pg = env->me_maxfree_1pg, more = 1; 3108 txnid_t pglast = 0, head_id = 0; 3109 pgno_t freecnt = 0, *free_pgs, *mop; 3110 ssize_t head_room = 0, total_room = 0, mop_len, clean_limit; 3111 3112 mdb_cursor_init(&mc, txn, FREE_DBI, NULL); 3113 3114 if (env->me_pghead) { 3115 /* Make sure first page of freeDB is touched and on freelist */ 3116 rc = mdb_page_search(&mc, NULL, MDB_PS_FIRST|MDB_PS_MODIFY); 3117 if (rc && rc != MDB_NOTFOUND) 3118 return rc; 3119 } 3120 3121 if (!env->me_pghead && txn->mt_loose_pgs) { 3122 /* Put loose page numbers in mt_free_pgs, since 3123 * we may be unable to return them to me_pghead. 3124 */ 3125 MDB_page *mp = txn->mt_loose_pgs; 3126 MDB_ID2 *dl = txn->mt_u.dirty_list; 3127 unsigned x; 3128 if ((rc = mdb_midl_need(&txn->mt_free_pgs, txn->mt_loose_count)) != 0) 3129 return rc; 3130 for (; mp; mp = NEXT_LOOSE_PAGE(mp)) { 3131 mdb_midl_xappend(txn->mt_free_pgs, mp->mp_pgno); 3132 /* must also remove from dirty list */ 3133 if (txn->mt_flags & MDB_TXN_WRITEMAP) { 3134 for (x=1; x<=dl[0].mid; x++) 3135 if (dl[x].mid == mp->mp_pgno) 3136 break; 3137 mdb_tassert(txn, x <= dl[0].mid); 3138 } else { 3139 x = mdb_mid2l_search(dl, mp->mp_pgno); 3140 mdb_tassert(txn, dl[x].mid == mp->mp_pgno); 3141 mdb_dpage_free(env, mp); 3142 } 3143 dl[x].mptr = NULL; 3144 } 3145 { 3146 /* squash freed slots out of the dirty list */ 3147 unsigned y; 3148 for (y=1; dl[y].mptr && y <= dl[0].mid; y++); 3149 if (y <= dl[0].mid) { 3150 for(x=y, y++;;) { 3151 while (!dl[y].mptr && y <= dl[0].mid) y++; 3152 if (y > dl[0].mid) break; 3153 dl[x++] = dl[y++]; 3154 } 3155 dl[0].mid = x-1; 3156 } else { 3157 /* all slots freed */ 3158 dl[0].mid = 0; 3159 } 3160 } 3161 txn->mt_loose_pgs = NULL; 3162 txn->mt_loose_count = 0; 3163 } 3164 3165 /* MDB_RESERVE cancels meminit in ovpage malloc (when no WRITEMAP) */ 3166 clean_limit = (env->me_flags & (MDB_NOMEMINIT|MDB_WRITEMAP)) 3167 ? SSIZE_MAX : maxfree_1pg; 3168 3169 for (;;) { 3170 /* Come back here after each Put() in case freelist changed */ 3171 MDB_val key, data; 3172 pgno_t *pgs; 3173 ssize_t j; 3174 3175 /* If using records from freeDB which we have not yet 3176 * deleted, delete them and any we reserved for me_pghead. 3177 */ 3178 while (pglast < env->me_pglast) { 3179 rc = mdb_cursor_first(&mc, &key, NULL); 3180 if (rc) 3181 return rc; 3182 pglast = head_id = *(txnid_t *)key.mv_data; 3183 total_room = head_room = 0; 3184 mdb_tassert(txn, pglast <= env->me_pglast); 3185 rc = mdb_cursor_del(&mc, 0); 3186 if (rc) 3187 return rc; 3188 } 3189 3190 /* Save the IDL of pages freed by this txn, to a single record */ 3191 if (freecnt < txn->mt_free_pgs[0]) { 3192 if (!freecnt) { 3193 /* Make sure last page of freeDB is touched and on freelist */ 3194 rc = mdb_page_search(&mc, NULL, MDB_PS_LAST|MDB_PS_MODIFY); 3195 if (rc && rc != MDB_NOTFOUND) 3196 return rc; 3197 } 3198 free_pgs = txn->mt_free_pgs; 3199 /* Write to last page of freeDB */ 3200 key.mv_size = sizeof(txn->mt_txnid); 3201 key.mv_data = &txn->mt_txnid; 3202 do { 3203 freecnt = free_pgs[0]; 3204 data.mv_size = MDB_IDL_SIZEOF(free_pgs); 3205 rc = mdb_cursor_put(&mc, &key, &data, MDB_RESERVE); 3206 if (rc) 3207 return rc; 3208 /* Retry if mt_free_pgs[] grew during the Put() */ 3209 free_pgs = txn->mt_free_pgs; 3210 } while (freecnt < free_pgs[0]); 3211 mdb_midl_sort(free_pgs); 3212 memcpy(data.mv_data, free_pgs, data.mv_size); 3213 #if (MDB_DEBUG) > 1 3214 { 3215 unsigned int i = free_pgs[0]; 3216 DPRINTF(("IDL write txn %"Z"u root %"Z"u num %u", 3217 txn->mt_txnid, txn->mt_dbs[FREE_DBI].md_root, i)); 3218 for (; i; i--) 3219 DPRINTF(("IDL %"Z"u", free_pgs[i])); 3220 } 3221 #endif 3222 continue; 3223 } 3224 3225 mop = env->me_pghead; 3226 mop_len = (mop ? mop[0] : 0) + txn->mt_loose_count; 3227 3228 /* Reserve records for me_pghead[]. Split it if multi-page, 3229 * to avoid searching freeDB for a page range. Use keys in 3230 * range [1,me_pglast]: Smaller than txnid of oldest reader. 3231 */ 3232 if (total_room >= mop_len) { 3233 if (total_room == mop_len || --more < 0) 3234 break; 3235 } else if (head_room >= maxfree_1pg && head_id > 1) { 3236 /* Keep current record (overflow page), add a new one */ 3237 head_id--; 3238 head_room = 0; 3239 } 3240 /* (Re)write {key = head_id, IDL length = head_room} */ 3241 total_room -= head_room; 3242 head_room = mop_len - total_room; 3243 if (head_room > maxfree_1pg && head_id > 1) { 3244 /* Overflow multi-page for part of me_pghead */ 3245 head_room /= head_id; /* amortize page sizes */ 3246 head_room += maxfree_1pg - head_room % (maxfree_1pg + 1); 3247 } else if (head_room < 0) { 3248 /* Rare case, not bothering to delete this record */ 3249 head_room = 0; 3250 } 3251 key.mv_size = sizeof(head_id); 3252 key.mv_data = &head_id; 3253 data.mv_size = (head_room + 1) * sizeof(pgno_t); 3254 rc = mdb_cursor_put(&mc, &key, &data, MDB_RESERVE); 3255 if (rc) 3256 return rc; 3257 /* IDL is initially empty, zero out at least the length */ 3258 pgs = (pgno_t *)data.mv_data; 3259 j = head_room > clean_limit ? head_room : 0; 3260 do { 3261 pgs[j] = 0; 3262 } while (--j >= 0); 3263 total_room += head_room; 3264 } 3265 3266 /* Return loose page numbers to me_pghead, though usually none are 3267 * left at this point. The pages themselves remain in dirty_list. 3268 */ 3269 if (txn->mt_loose_pgs) { 3270 MDB_page *mp = txn->mt_loose_pgs; 3271 unsigned count = txn->mt_loose_count; 3272 MDB_IDL loose; 3273 /* Room for loose pages + temp IDL with same */ 3274 if ((rc = mdb_midl_need(&env->me_pghead, 2*count+1)) != 0) 3275 return rc; 3276 mop = env->me_pghead; 3277 loose = mop + MDB_IDL_ALLOCLEN(mop) - count; 3278 for (count = 0; mp; mp = NEXT_LOOSE_PAGE(mp)) 3279 loose[ ++count ] = mp->mp_pgno; 3280 loose[0] = count; 3281 mdb_midl_sort(loose); 3282 mdb_midl_xmerge(mop, loose); 3283 txn->mt_loose_pgs = NULL; 3284 txn->mt_loose_count = 0; 3285 mop_len = mop[0]; 3286 } 3287 3288 /* Fill in the reserved me_pghead records */ 3289 rc = MDB_SUCCESS; 3290 if (mop_len) { 3291 MDB_val key, data; 3292 3293 mop += mop_len; 3294 rc = mdb_cursor_first(&mc, &key, &data); 3295 for (; !rc; rc = mdb_cursor_next(&mc, &key, &data, MDB_NEXT)) { 3296 txnid_t id = *(txnid_t *)key.mv_data; 3297 ssize_t len = (ssize_t)(data.mv_size / sizeof(MDB_ID)) - 1; 3298 MDB_ID save; 3299 3300 mdb_tassert(txn, len >= 0 && id <= env->me_pglast); 3301 key.mv_data = &id; 3302 if (len > mop_len) { 3303 len = mop_len; 3304 data.mv_size = (len + 1) * sizeof(MDB_ID); 3305 } 3306 data.mv_data = mop -= len; 3307 save = mop[0]; 3308 mop[0] = len; 3309 rc = mdb_cursor_put(&mc, &key, &data, MDB_CURRENT); 3310 mop[0] = save; 3311 if (rc || !(mop_len -= len)) 3312 break; 3313 } 3314 } 3315 return rc; 3316 } 3317 3318 /** Flush (some) dirty pages to the map, after clearing their dirty flag. 3319 * @param[in] txn the transaction that's being committed 3320 * @param[in] keep number of initial pages in dirty_list to keep dirty. 3321 * @return 0 on success, non-zero on failure. 3322 */ 3323 static int 3324 mdb_page_flush(MDB_txn *txn, int keep) 3325 { 3326 MDB_env *env = txn->mt_env; 3327 MDB_ID2L dl = txn->mt_u.dirty_list; 3328 unsigned psize = env->me_psize, j; 3329 int i, pagecount = dl[0].mid, rc; 3330 size_t size = 0, pos = 0; 3331 pgno_t pgno = 0; 3332 MDB_page *dp = NULL; 3333 #ifdef _WIN32 3334 OVERLAPPED ov; 3335 #else 3336 struct iovec iov[MDB_COMMIT_PAGES]; 3337 ssize_t wpos = 0, wsize = 0, wres; 3338 size_t next_pos = 1; /* impossible pos, so pos != next_pos */ 3339 int n = 0; 3340 #endif 3341 3342 j = i = keep; 3343 3344 if (env->me_flags & MDB_WRITEMAP) { 3345 /* Clear dirty flags */ 3346 while (++i <= pagecount) { 3347 dp = dl[i].mptr; 3348 /* Don't flush this page yet */ 3349 if (dp->mp_flags & (P_LOOSE|P_KEEP)) { 3350 dp->mp_flags &= ~P_KEEP; 3351 dl[++j] = dl[i]; 3352 continue; 3353 } 3354 dp->mp_flags &= ~P_DIRTY; 3355 } 3356 goto done; 3357 } 3358 3359 /* Write the pages */ 3360 for (;;) { 3361 if (++i <= pagecount) { 3362 dp = dl[i].mptr; 3363 /* Don't flush this page yet */ 3364 if (dp->mp_flags & (P_LOOSE|P_KEEP)) { 3365 dp->mp_flags &= ~P_KEEP; 3366 dl[i].mid = 0; 3367 continue; 3368 } 3369 pgno = dl[i].mid; 3370 /* clear dirty flag */ 3371 dp->mp_flags &= ~P_DIRTY; 3372 pos = pgno * psize; 3373 size = psize; 3374 if (IS_OVERFLOW(dp)) size *= dp->mp_pages; 3375 } 3376 #ifdef _WIN32 3377 else break; 3378 3379 /* Windows actually supports scatter/gather I/O, but only on 3380 * unbuffered file handles. Since we're relying on the OS page 3381 * cache for all our data, that's self-defeating. So we just 3382 * write pages one at a time. We use the ov structure to set 3383 * the write offset, to at least save the overhead of a Seek 3384 * system call. 3385 */ 3386 DPRINTF(("committing page %"Z"u", pgno)); 3387 memset(&ov, 0, sizeof(ov)); 3388 ov.Offset = pos & 0xffffffff; 3389 ov.OffsetHigh = pos >> 16 >> 16; 3390 if (!WriteFile(env->me_fd, dp, size, NULL, &ov)) { 3391 rc = ErrCode(); 3392 DPRINTF(("WriteFile: %d", rc)); 3393 return rc; 3394 } 3395 #else 3396 /* Write up to MDB_COMMIT_PAGES dirty pages at a time. */ 3397 if (pos!=next_pos || n==MDB_COMMIT_PAGES || wsize+size>MAX_WRITE) { 3398 if (n) { 3399 retry_write: 3400 /* Write previous page(s) */ 3401 #ifdef MDB_USE_PWRITEV 3402 wres = pwritev(env->me_fd, iov, n, wpos); 3403 #else 3404 if (n == 1) { 3405 wres = pwrite(env->me_fd, iov[0].iov_base, wsize, wpos); 3406 } else { 3407 retry_seek: 3408 if (lseek(env->me_fd, wpos, SEEK_SET) == -1) { 3409 rc = ErrCode(); 3410 if (rc == EINTR) 3411 goto retry_seek; 3412 DPRINTF(("lseek: %s", strerror(rc))); 3413 return rc; 3414 } 3415 wres = writev(env->me_fd, iov, n); 3416 } 3417 #endif 3418 if (wres != wsize) { 3419 if (wres < 0) { 3420 rc = ErrCode(); 3421 if (rc == EINTR) 3422 goto retry_write; 3423 DPRINTF(("Write error: %s", strerror(rc))); 3424 } else { 3425 rc = EIO; /* TODO: Use which error code? */ 3426 DPUTS("short write, filesystem full?"); 3427 } 3428 return rc; 3429 } 3430 n = 0; 3431 } 3432 if (i > pagecount) 3433 break; 3434 wpos = pos; 3435 wsize = 0; 3436 } 3437 DPRINTF(("committing page %"Z"u", pgno)); 3438 next_pos = pos + size; 3439 iov[n].iov_len = size; 3440 iov[n].iov_base = (char *)dp; 3441 wsize += size; 3442 n++; 3443 #endif /* _WIN32 */ 3444 } 3445 3446 /* MIPS has cache coherency issues, this is a no-op everywhere else 3447 * Note: for any size >= on-chip cache size, entire on-chip cache is 3448 * flushed. 3449 */ 3450 CACHEFLUSH(env->me_map, txn->mt_next_pgno * env->me_psize, DCACHE); 3451 3452 for (i = keep; ++i <= pagecount; ) { 3453 dp = dl[i].mptr; 3454 /* This is a page we skipped above */ 3455 if (!dl[i].mid) { 3456 dl[++j] = dl[i]; 3457 dl[j].mid = dp->mp_pgno; 3458 continue; 3459 } 3460 mdb_dpage_free(env, dp); 3461 } 3462 3463 done: 3464 i--; 3465 txn->mt_dirty_room += i - j; 3466 dl[0].mid = j; 3467 return MDB_SUCCESS; 3468 } 3469 3470 int 3471 mdb_txn_commit(MDB_txn *txn) 3472 { 3473 int rc; 3474 unsigned int i, end_mode; 3475 MDB_env *env; 3476 3477 if (txn == NULL) 3478 return EINVAL; 3479 3480 /* mdb_txn_end() mode for a commit which writes nothing */ 3481 end_mode = MDB_END_EMPTY_COMMIT|MDB_END_UPDATE|MDB_END_SLOT|MDB_END_FREE; 3482 3483 if (txn->mt_child) { 3484 rc = mdb_txn_commit(txn->mt_child); 3485 if (rc) 3486 goto fail; 3487 } 3488 3489 env = txn->mt_env; 3490 3491 if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) { 3492 goto done; 3493 } 3494 3495 if (txn->mt_flags & (MDB_TXN_FINISHED|MDB_TXN_ERROR)) { 3496 DPUTS("txn has failed/finished, can't commit"); 3497 if (txn->mt_parent) 3498 txn->mt_parent->mt_flags |= MDB_TXN_ERROR; 3499 rc = MDB_BAD_TXN; 3500 goto fail; 3501 } 3502 3503 if (txn->mt_parent) { 3504 MDB_txn *parent = txn->mt_parent; 3505 MDB_page **lp; 3506 MDB_ID2L dst, src; 3507 MDB_IDL pspill; 3508 unsigned x, y, len, ps_len; 3509 3510 /* Append our free list to parent's */ 3511 rc = mdb_midl_append_list(&parent->mt_free_pgs, txn->mt_free_pgs); 3512 if (rc) 3513 goto fail; 3514 mdb_midl_free(txn->mt_free_pgs); 3515 /* Failures after this must either undo the changes 3516 * to the parent or set MDB_TXN_ERROR in the parent. 3517 */ 3518 3519 parent->mt_next_pgno = txn->mt_next_pgno; 3520 parent->mt_flags = txn->mt_flags; 3521 3522 /* Merge our cursors into parent's and close them */ 3523 mdb_cursors_close(txn, 1); 3524 3525 /* Update parent's DB table. */ 3526 memcpy(parent->mt_dbs, txn->mt_dbs, txn->mt_numdbs * sizeof(MDB_db)); 3527 parent->mt_numdbs = txn->mt_numdbs; 3528 parent->mt_dbflags[FREE_DBI] = txn->mt_dbflags[FREE_DBI]; 3529 parent->mt_dbflags[MAIN_DBI] = txn->mt_dbflags[MAIN_DBI]; 3530 for (i=CORE_DBS; i<txn->mt_numdbs; i++) { 3531 /* preserve parent's DB_NEW status */ 3532 x = parent->mt_dbflags[i] & DB_NEW; 3533 parent->mt_dbflags[i] = txn->mt_dbflags[i] | x; 3534 } 3535 3536 dst = parent->mt_u.dirty_list; 3537 src = txn->mt_u.dirty_list; 3538 /* Remove anything in our dirty list from parent's spill list */ 3539 if ((pspill = parent->mt_spill_pgs) && (ps_len = pspill[0])) { 3540 x = y = ps_len; 3541 pspill[0] = (pgno_t)-1; 3542 /* Mark our dirty pages as deleted in parent spill list */ 3543 for (i=0, len=src[0].mid; ++i <= len; ) { 3544 MDB_ID pn = src[i].mid << 1; 3545 while (pn > pspill[x]) 3546 x--; 3547 if (pn == pspill[x]) { 3548 pspill[x] = 1; 3549 y = --x; 3550 } 3551 } 3552 /* Squash deleted pagenums if we deleted any */ 3553 for (x=y; ++x <= ps_len; ) 3554 if (!(pspill[x] & 1)) 3555 pspill[++y] = pspill[x]; 3556 pspill[0] = y; 3557 } 3558 3559 /* Remove anything in our spill list from parent's dirty list */ 3560 if (txn->mt_spill_pgs && txn->mt_spill_pgs[0]) { 3561 for (i=1; i<=txn->mt_spill_pgs[0]; i++) { 3562 MDB_ID pn = txn->mt_spill_pgs[i]; 3563 if (pn & 1) 3564 continue; /* deleted spillpg */ 3565 pn >>= 1; 3566 y = mdb_mid2l_search(dst, pn); 3567 if (y <= dst[0].mid && dst[y].mid == pn) { 3568 free(dst[y].mptr); 3569 while (y < dst[0].mid) { 3570 dst[y] = dst[y+1]; 3571 y++; 3572 } 3573 dst[0].mid--; 3574 } 3575 } 3576 } 3577 3578 /* Find len = length of merging our dirty list with parent's */ 3579 x = dst[0].mid; 3580 dst[0].mid = 0; /* simplify loops */ 3581 if (parent->mt_parent) { 3582 len = x + src[0].mid; 3583 y = mdb_mid2l_search(src, dst[x].mid + 1) - 1; 3584 for (i = x; y && i; y--) { 3585 pgno_t yp = src[y].mid; 3586 while (yp < dst[i].mid) 3587 i--; 3588 if (yp == dst[i].mid) { 3589 i--; 3590 len--; 3591 } 3592 } 3593 } else { /* Simplify the above for single-ancestor case */ 3594 len = MDB_IDL_UM_MAX - txn->mt_dirty_room; 3595 } 3596 /* Merge our dirty list with parent's */ 3597 y = src[0].mid; 3598 for (i = len; y; dst[i--] = src[y--]) { 3599 pgno_t yp = src[y].mid; 3600 while (yp < dst[x].mid) 3601 dst[i--] = dst[x--]; 3602 if (yp == dst[x].mid) 3603 free(dst[x--].mptr); 3604 } 3605 mdb_tassert(txn, i == x); 3606 dst[0].mid = len; 3607 free(txn->mt_u.dirty_list); 3608 parent->mt_dirty_room = txn->mt_dirty_room; 3609 if (txn->mt_spill_pgs) { 3610 if (parent->mt_spill_pgs) { 3611 /* TODO: Prevent failure here, so parent does not fail */ 3612 rc = mdb_midl_append_list(&parent->mt_spill_pgs, txn->mt_spill_pgs); 3613 if (rc) 3614 parent->mt_flags |= MDB_TXN_ERROR; 3615 mdb_midl_free(txn->mt_spill_pgs); 3616 mdb_midl_sort(parent->mt_spill_pgs); 3617 } else { 3618 parent->mt_spill_pgs = txn->mt_spill_pgs; 3619 } 3620 } 3621 3622 /* Append our loose page list to parent's */ 3623 for (lp = &parent->mt_loose_pgs; *lp; lp = &NEXT_LOOSE_PAGE(*lp)) 3624 ; 3625 *lp = txn->mt_loose_pgs; 3626 parent->mt_loose_count += txn->mt_loose_count; 3627 3628 parent->mt_child = NULL; 3629 mdb_midl_free(((MDB_ntxn *)txn)->mnt_pgstate.mf_pghead); 3630 free(txn); 3631 return rc; 3632 } 3633 3634 if (txn != env->me_txn) { 3635 DPUTS("attempt to commit unknown transaction"); 3636 rc = EINVAL; 3637 goto fail; 3638 } 3639 3640 mdb_cursors_close(txn, 0); 3641 3642 if (!txn->mt_u.dirty_list[0].mid && 3643 !(txn->mt_flags & (MDB_TXN_DIRTY|MDB_TXN_SPILLS))) 3644 goto done; 3645 3646 DPRINTF(("committing txn %"Z"u %p on mdbenv %p, root page %"Z"u", 3647 txn->mt_txnid, (void*)txn, (void*)env, txn->mt_dbs[MAIN_DBI].md_root)); 3648 3649 /* Update DB root pointers */ 3650 if (txn->mt_numdbs > CORE_DBS) { 3651 MDB_cursor mc; 3652 MDB_dbi i; 3653 MDB_val data; 3654 data.mv_size = sizeof(MDB_db); 3655 3656 mdb_cursor_init(&mc, txn, MAIN_DBI, NULL); 3657 for (i = CORE_DBS; i < txn->mt_numdbs; i++) { 3658 if (txn->mt_dbflags[i] & DB_DIRTY) { 3659 if (TXN_DBI_CHANGED(txn, i)) { 3660 rc = MDB_BAD_DBI; 3661 goto fail; 3662 } 3663 data.mv_data = &txn->mt_dbs[i]; 3664 rc = mdb_cursor_put(&mc, &txn->mt_dbxs[i].md_name, &data, 3665 F_SUBDATA); 3666 if (rc) 3667 goto fail; 3668 } 3669 } 3670 } 3671 3672 rc = mdb_freelist_save(txn); 3673 if (rc) 3674 goto fail; 3675 3676 mdb_midl_free(env->me_pghead); 3677 env->me_pghead = NULL; 3678 mdb_midl_shrink(&txn->mt_free_pgs); 3679 3680 #if (MDB_DEBUG) > 2 3681 mdb_audit(txn); 3682 #endif 3683 3684 if ((rc = mdb_page_flush(txn, 0)) || 3685 (rc = mdb_env_sync(env, 0)) || 3686 (rc = mdb_env_write_meta(txn))) 3687 goto fail; 3688 end_mode = MDB_END_COMMITTED|MDB_END_UPDATE; 3689 3690 done: 3691 mdb_txn_end(txn, end_mode); 3692 return MDB_SUCCESS; 3693 3694 fail: 3695 mdb_txn_abort(txn); 3696 return rc; 3697 } 3698 3699 /** Read the environment parameters of a DB environment before 3700 * mapping it into memory. 3701 * @param[in] env the environment handle 3702 * @param[out] meta address of where to store the meta information 3703 * @return 0 on success, non-zero on failure. 3704 */ 3705 static int ESECT 3706 mdb_env_read_header(MDB_env *env, MDB_meta *meta) 3707 { 3708 MDB_metabuf pbuf; 3709 MDB_page *p; 3710 MDB_meta *m; 3711 int i, rc, off; 3712 enum { Size = sizeof(pbuf) }; 3713 3714 /* We don't know the page size yet, so use a minimum value. 3715 * Read both meta pages so we can use the latest one. 3716 */ 3717 3718 for (i=off=0; i<NUM_METAS; i++, off += meta->mm_psize) { 3719 #ifdef _WIN32 3720 DWORD len; 3721 OVERLAPPED ov; 3722 memset(&ov, 0, sizeof(ov)); 3723 ov.Offset = off; 3724 rc = ReadFile(env->me_fd, &pbuf, Size, &len, &ov) ? (int)len : -1; 3725 if (rc == -1 && ErrCode() == ERROR_HANDLE_EOF) 3726 rc = 0; 3727 #else 3728 rc = pread(env->me_fd, &pbuf, Size, off); 3729 #endif 3730 if (rc != Size) { 3731 if (rc == 0 && off == 0) 3732 return ENOENT; 3733 rc = rc < 0 ? (int) ErrCode() : MDB_INVALID; 3734 DPRINTF(("read: %s", mdb_strerror(rc))); 3735 return rc; 3736 } 3737 3738 p = (MDB_page *)&pbuf; 3739 3740 if (!F_ISSET(p->mp_flags, P_META)) { 3741 DPRINTF(("page %"Z"u not a meta page", p->mp_pgno)); 3742 return MDB_INVALID; 3743 } 3744 3745 m = METADATA(p); 3746 if (m->mm_magic != MDB_MAGIC) { 3747 DPUTS("meta has invalid magic"); 3748 return MDB_INVALID; 3749 } 3750 3751 if (m->mm_version != MDB_DATA_VERSION) { 3752 DPRINTF(("database is version %u, expected version %u", 3753 m->mm_version, MDB_DATA_VERSION)); 3754 return MDB_VERSION_MISMATCH; 3755 } 3756 3757 if (off == 0 || m->mm_txnid > meta->mm_txnid) 3758 *meta = *m; 3759 } 3760 return 0; 3761 } 3762 3763 /** Fill in most of the zeroed #MDB_meta for an empty database environment */ 3764 static void ESECT 3765 mdb_env_init_meta0(MDB_env *env, MDB_meta *meta) 3766 { 3767 meta->mm_magic = MDB_MAGIC; 3768 meta->mm_version = MDB_DATA_VERSION; 3769 meta->mm_mapsize = env->me_mapsize; 3770 meta->mm_psize = env->me_psize; 3771 meta->mm_last_pg = NUM_METAS-1; 3772 meta->mm_flags = env->me_flags & 0xffff; 3773 meta->mm_flags |= MDB_INTEGERKEY; /* this is mm_dbs[FREE_DBI].md_flags */ 3774 meta->mm_dbs[FREE_DBI].md_root = P_INVALID; 3775 meta->mm_dbs[MAIN_DBI].md_root = P_INVALID; 3776 } 3777 3778 /** Write the environment parameters of a freshly created DB environment. 3779 * @param[in] env the environment handle 3780 * @param[in] meta the #MDB_meta to write 3781 * @return 0 on success, non-zero on failure. 3782 */ 3783 static int ESECT 3784 mdb_env_init_meta(MDB_env *env, MDB_meta *meta) 3785 { 3786 MDB_page *p, *q; 3787 int rc; 3788 unsigned int psize; 3789 #ifdef _WIN32 3790 DWORD len; 3791 OVERLAPPED ov; 3792 memset(&ov, 0, sizeof(ov)); 3793 #define DO_PWRITE(rc, fd, ptr, size, len, pos) do { \ 3794 ov.Offset = pos; \ 3795 rc = WriteFile(fd, ptr, size, &len, &ov); } while(0) 3796 #else 3797 int len; 3798 #define DO_PWRITE(rc, fd, ptr, size, len, pos) do { \ 3799 len = pwrite(fd, ptr, size, pos); \ 3800 if (len == -1 && ErrCode() == EINTR) continue; \ 3801 rc = (len >= 0); break; } while(1) 3802 #endif 3803 3804 DPUTS("writing new meta page"); 3805 3806 psize = env->me_psize; 3807 3808 p = calloc(NUM_METAS, psize); 3809 if (!p) 3810 return ENOMEM; 3811 3812 p->mp_pgno = 0; 3813 p->mp_flags = P_META; 3814 *(MDB_meta *)METADATA(p) = *meta; 3815 3816 q = (MDB_page *)((char *)p + psize); 3817 q->mp_pgno = 1; 3818 q->mp_flags = P_META; 3819 *(MDB_meta *)METADATA(q) = *meta; 3820 3821 DO_PWRITE(rc, env->me_fd, p, psize * NUM_METAS, len, 0); 3822 if (!rc) 3823 rc = ErrCode(); 3824 else if ((unsigned) len == psize * NUM_METAS) 3825 rc = MDB_SUCCESS; 3826 else 3827 rc = ENOSPC; 3828 free(p); 3829 return rc; 3830 } 3831 3832 /** Update the environment info to commit a transaction. 3833 * @param[in] txn the transaction that's being committed 3834 * @return 0 on success, non-zero on failure. 3835 */ 3836 static int 3837 mdb_env_write_meta(MDB_txn *txn) 3838 { 3839 MDB_env *env; 3840 MDB_meta meta, metab, *mp; 3841 unsigned flags; 3842 size_t mapsize; 3843 off_t off; 3844 int rc, len, toggle; 3845 char *ptr; 3846 HANDLE mfd; 3847 #ifdef _WIN32 3848 OVERLAPPED ov; 3849 #else 3850 int r2; 3851 #endif 3852 3853 toggle = txn->mt_txnid & 1; 3854 DPRINTF(("writing meta page %d for root page %"Z"u", 3855 toggle, txn->mt_dbs[MAIN_DBI].md_root)); 3856 3857 env = txn->mt_env; 3858 flags = env->me_flags; 3859 mp = env->me_metas[toggle]; 3860 mapsize = env->me_metas[toggle ^ 1]->mm_mapsize; 3861 /* Persist any increases of mapsize config */ 3862 if (mapsize < env->me_mapsize) 3863 mapsize = env->me_mapsize; 3864 3865 if (flags & MDB_WRITEMAP) { 3866 mp->mm_mapsize = mapsize; 3867 mp->mm_dbs[FREE_DBI] = txn->mt_dbs[FREE_DBI]; 3868 mp->mm_dbs[MAIN_DBI] = txn->mt_dbs[MAIN_DBI]; 3869 mp->mm_last_pg = txn->mt_next_pgno - 1; 3870 #if (__GNUC__ * 100 + __GNUC_MINOR__ >= 404) && /* TODO: portability */ \ 3871 !(defined(__i386__) || defined(__x86_64__)) 3872 /* LY: issue a memory barrier, if not x86. ITS#7969 */ 3873 __sync_synchronize(); 3874 #endif 3875 mp->mm_txnid = txn->mt_txnid; 3876 if (!(flags & (MDB_NOMETASYNC|MDB_NOSYNC))) { 3877 unsigned meta_size = env->me_psize; 3878 rc = (env->me_flags & MDB_MAPASYNC) ? MS_ASYNC : MS_SYNC; 3879 ptr = (char *)mp - PAGEHDRSZ; 3880 #ifndef _WIN32 /* POSIX msync() requires ptr = start of OS page */ 3881 r2 = (ptr - env->me_map) & (env->me_os_psize - 1); 3882 ptr -= r2; 3883 meta_size += r2; 3884 #endif 3885 if (MDB_MSYNC(ptr, meta_size, rc)) { 3886 rc = ErrCode(); 3887 goto fail; 3888 } 3889 } 3890 goto done; 3891 } 3892 metab.mm_txnid = mp->mm_txnid; 3893 metab.mm_last_pg = mp->mm_last_pg; 3894 3895 meta.mm_mapsize = mapsize; 3896 meta.mm_dbs[FREE_DBI] = txn->mt_dbs[FREE_DBI]; 3897 meta.mm_dbs[MAIN_DBI] = txn->mt_dbs[MAIN_DBI]; 3898 meta.mm_last_pg = txn->mt_next_pgno - 1; 3899 meta.mm_txnid = txn->mt_txnid; 3900 3901 off = offsetof(MDB_meta, mm_mapsize); 3902 ptr = (char *)&meta + off; 3903 len = sizeof(MDB_meta) - off; 3904 off += (char *)mp - env->me_map; 3905 3906 /* Write to the SYNC fd unless MDB_NOSYNC/MDB_NOMETASYNC. 3907 * (me_mfd goes to the same file as me_fd, but writing to it 3908 * also syncs to disk. Avoids a separate fdatasync() call.) 3909 */ 3910 mfd = (flags & (MDB_NOSYNC|MDB_NOMETASYNC)) ? env->me_fd : env->me_mfd; 3911 #ifdef _WIN32 3912 { 3913 memset(&ov, 0, sizeof(ov)); 3914 ov.Offset = off; 3915 if (!WriteFile(mfd, ptr, len, (DWORD *)&rc, &ov)) 3916 rc = -1; 3917 } 3918 #else 3919 retry_write: 3920 rc = pwrite(mfd, ptr, len, off); 3921 #endif 3922 if (rc != len) { 3923 rc = rc < 0 ? ErrCode() : EIO; 3924 #ifndef _WIN32 3925 if (rc == EINTR) 3926 goto retry_write; 3927 #endif 3928 DPUTS("write failed, disk error?"); 3929 /* On a failure, the pagecache still contains the new data. 3930 * Write some old data back, to prevent it from being used. 3931 * Use the non-SYNC fd; we know it will fail anyway. 3932 */ 3933 meta.mm_last_pg = metab.mm_last_pg; 3934 meta.mm_txnid = metab.mm_txnid; 3935 #ifdef _WIN32 3936 memset(&ov, 0, sizeof(ov)); 3937 ov.Offset = off; 3938 WriteFile(env->me_fd, ptr, len, NULL, &ov); 3939 #else 3940 r2 = pwrite(env->me_fd, ptr, len, off); 3941 (void)r2; /* Silence warnings. We don't care about pwrite's return value */ 3942 #endif 3943 fail: 3944 env->me_flags |= MDB_FATAL_ERROR; 3945 return rc; 3946 } 3947 /* MIPS has cache coherency issues, this is a no-op everywhere else */ 3948 CACHEFLUSH(env->me_map + off, len, DCACHE); 3949 done: 3950 /* Memory ordering issues are irrelevant; since the entire writer 3951 * is wrapped by wmutex, all of these changes will become visible 3952 * after the wmutex is unlocked. Since the DB is multi-version, 3953 * readers will get consistent data regardless of how fresh or 3954 * how stale their view of these values is. 3955 */ 3956 if (env->me_txns) 3957 env->me_txns->mti_txnid = txn->mt_txnid; 3958 3959 return MDB_SUCCESS; 3960 } 3961 3962 /** Check both meta pages to see which one is newer. 3963 * @param[in] env the environment handle 3964 * @return newest #MDB_meta. 3965 */ 3966 static MDB_meta * 3967 mdb_env_pick_meta(const MDB_env *env) 3968 { 3969 MDB_meta *const *metas = env->me_metas; 3970 return metas[ metas[0]->mm_txnid < metas[1]->mm_txnid ]; 3971 } 3972 3973 int ESECT 3974 mdb_env_create(MDB_env **env) 3975 { 3976 MDB_env *e; 3977 3978 e = calloc(1, sizeof(MDB_env)); 3979 if (!e) 3980 return ENOMEM; 3981 3982 e->me_maxreaders = DEFAULT_READERS; 3983 e->me_maxdbs = e->me_numdbs = CORE_DBS; 3984 e->me_fd = INVALID_HANDLE_VALUE; 3985 e->me_lfd = INVALID_HANDLE_VALUE; 3986 e->me_mfd = INVALID_HANDLE_VALUE; 3987 #ifdef MDB_USE_POSIX_SEM 3988 e->me_rmutex = SEM_FAILED; 3989 e->me_wmutex = SEM_FAILED; 3990 #endif 3991 e->me_pid = getpid(); 3992 GET_PAGESIZE(e->me_os_psize); 3993 VGMEMP_CREATE(e,0,0); 3994 *env = e; 3995 return MDB_SUCCESS; 3996 } 3997 3998 static int ESECT 3999 mdb_env_map(MDB_env *env, void *addr) 4000 { 4001 MDB_page *p; 4002 unsigned int flags = env->me_flags; 4003 #ifdef _WIN32 4004 int rc; 4005 HANDLE mh; 4006 LONG sizelo, sizehi; 4007 size_t msize; 4008 4009 if (flags & MDB_RDONLY) { 4010 /* Don't set explicit map size, use whatever exists */ 4011 msize = 0; 4012 sizelo = 0; 4013 sizehi = 0; 4014 } else { 4015 msize = env->me_mapsize; 4016 sizelo = msize & 0xffffffff; 4017 sizehi = msize >> 16 >> 16; /* only needed on Win64 */ 4018 4019 /* Windows won't create mappings for zero length files. 4020 * and won't map more than the file size. 4021 * Just set the maxsize right now. 4022 */ 4023 if (!(flags & MDB_WRITEMAP) && (SetFilePointer(env->me_fd, sizelo, &sizehi, 0) != (DWORD)sizelo 4024 || !SetEndOfFile(env->me_fd) 4025 || SetFilePointer(env->me_fd, 0, NULL, 0) != 0)) 4026 return ErrCode(); 4027 } 4028 4029 mh = CreateFileMapping(env->me_fd, NULL, flags & MDB_WRITEMAP ? 4030 PAGE_READWRITE : PAGE_READONLY, 4031 sizehi, sizelo, NULL); 4032 if (!mh) 4033 return ErrCode(); 4034 env->me_map = MapViewOfFileEx(mh, flags & MDB_WRITEMAP ? 4035 FILE_MAP_WRITE : FILE_MAP_READ, 4036 0, 0, msize, addr); 4037 rc = env->me_map ? 0 : ErrCode(); 4038 CloseHandle(mh); 4039 if (rc) 4040 return rc; 4041 #else 4042 int mmap_flags = MAP_SHARED; 4043 int prot = PROT_READ; 4044 #ifdef MAP_NOSYNC /* Used on FreeBSD */ 4045 if (flags & MDB_NOSYNC) 4046 mmap_flags |= MAP_NOSYNC; 4047 #endif 4048 if (flags & MDB_WRITEMAP) { 4049 prot |= PROT_WRITE; 4050 if (ftruncate(env->me_fd, env->me_mapsize) < 0) 4051 return ErrCode(); 4052 } 4053 env->me_map = mmap(addr, env->me_mapsize, prot, mmap_flags, 4054 env->me_fd, 0); 4055 if (env->me_map == MAP_FAILED) { 4056 env->me_map = NULL; 4057 return ErrCode(); 4058 } 4059 4060 if (flags & MDB_NORDAHEAD) { 4061 /* Turn off readahead. It's harmful when the DB is larger than RAM. */ 4062 #ifdef MADV_RANDOM 4063 madvise(env->me_map, env->me_mapsize, MADV_RANDOM); 4064 #else 4065 #ifdef POSIX_MADV_RANDOM 4066 posix_madvise(env->me_map, env->me_mapsize, POSIX_MADV_RANDOM); 4067 #endif /* POSIX_MADV_RANDOM */ 4068 #endif /* MADV_RANDOM */ 4069 } 4070 #endif /* _WIN32 */ 4071 4072 /* Can happen because the address argument to mmap() is just a 4073 * hint. mmap() can pick another, e.g. if the range is in use. 4074 * The MAP_FIXED flag would prevent that, but then mmap could 4075 * instead unmap existing pages to make room for the new map. 4076 */ 4077 if (addr && env->me_map != addr) 4078 return EBUSY; /* TODO: Make a new MDB_* error code? */ 4079 4080 p = (MDB_page *)env->me_map; 4081 env->me_metas[0] = METADATA(p); 4082 env->me_metas[1] = (MDB_meta *)((char *)env->me_metas[0] + env->me_psize); 4083 4084 return MDB_SUCCESS; 4085 } 4086 4087 int ESECT 4088 mdb_env_set_mapsize(MDB_env *env, size_t size) 4089 { 4090 /* If env is already open, caller is responsible for making 4091 * sure there are no active txns. 4092 */ 4093 if (env->me_map) { 4094 int rc; 4095 MDB_meta *meta; 4096 void *old; 4097 if (env->me_txn) 4098 return EINVAL; 4099 meta = mdb_env_pick_meta(env); 4100 if (!size) 4101 size = meta->mm_mapsize; 4102 { 4103 /* Silently round up to minimum if the size is too small */ 4104 size_t minsize = (meta->mm_last_pg + 1) * env->me_psize; 4105 if (size < minsize) 4106 size = minsize; 4107 } 4108 munmap(env->me_map, env->me_mapsize); 4109 env->me_mapsize = size; 4110 old = (env->me_flags & MDB_FIXEDMAP) ? env->me_map : NULL; 4111 rc = mdb_env_map(env, old); 4112 if (rc) 4113 return rc; 4114 } 4115 env->me_mapsize = size; 4116 if (env->me_psize) 4117 env->me_maxpg = env->me_mapsize / env->me_psize; 4118 return MDB_SUCCESS; 4119 } 4120 4121 int ESECT 4122 mdb_env_set_maxdbs(MDB_env *env, MDB_dbi dbs) 4123 { 4124 if (env->me_map) 4125 return EINVAL; 4126 env->me_maxdbs = dbs + CORE_DBS; 4127 return MDB_SUCCESS; 4128 } 4129 4130 int ESECT 4131 mdb_env_set_maxreaders(MDB_env *env, unsigned int readers) 4132 { 4133 if (env->me_map || readers < 1) 4134 return EINVAL; 4135 env->me_maxreaders = readers; 4136 return MDB_SUCCESS; 4137 } 4138 4139 int ESECT 4140 mdb_env_get_maxreaders(MDB_env *env, unsigned int *readers) 4141 { 4142 if (!env || !readers) 4143 return EINVAL; 4144 *readers = env->me_maxreaders; 4145 return MDB_SUCCESS; 4146 } 4147 4148 static int ESECT 4149 mdb_fsize(HANDLE fd, size_t *size) 4150 { 4151 #ifdef _WIN32 4152 LARGE_INTEGER fsize; 4153 4154 if (!GetFileSizeEx(fd, &fsize)) 4155 return ErrCode(); 4156 4157 *size = fsize.QuadPart; 4158 #else 4159 struct stat st; 4160 4161 if (fstat(fd, &st)) 4162 return ErrCode(); 4163 4164 *size = st.st_size; 4165 #endif 4166 return MDB_SUCCESS; 4167 } 4168 4169 4170 #ifdef _WIN32 4171 typedef wchar_t mdb_nchar_t; 4172 # define MDB_NAME(str) L##str 4173 # define mdb_name_cpy wcscpy 4174 #else 4175 /** Character type for file names: char on Unix, wchar_t on Windows */ 4176 typedef char mdb_nchar_t; 4177 # define MDB_NAME(str) str /**< #mdb_nchar_t[] string literal */ 4178 # define mdb_name_cpy strcpy /**< Copy name (#mdb_nchar_t string) */ 4179 #endif 4180 4181 /** Filename - string of #mdb_nchar_t[] */ 4182 typedef struct MDB_name { 4183 int mn_len; /**< Length */ 4184 int mn_alloced; /**< True if #mn_val was malloced */ 4185 mdb_nchar_t *mn_val; /**< Contents */ 4186 } MDB_name; 4187 4188 /** Filename suffixes [datafile,lockfile][without,with MDB_NOSUBDIR] */ 4189 static const mdb_nchar_t *const mdb_suffixes[2][2] = { 4190 { MDB_NAME("/data.mdb"), MDB_NAME("") }, 4191 { MDB_NAME("/lock.mdb"), MDB_NAME("-lock") } 4192 }; 4193 4194 #define MDB_SUFFLEN 9 /**< Max string length in #mdb_suffixes[] */ 4195 4196 /** Set up filename + scratch area for filename suffix, for opening files. 4197 * It should be freed with #mdb_fname_destroy(). 4198 * On Windows, paths are converted from char *UTF-8 to wchar_t *UTF-16. 4199 * 4200 * @param[in] path Pathname for #mdb_env_open(). 4201 * @param[in] envflags Whether a subdir and/or lockfile will be used. 4202 * @param[out] fname Resulting filename, with room for a suffix if necessary. 4203 */ 4204 static int ESECT 4205 mdb_fname_init(const char *path, unsigned envflags, MDB_name *fname) 4206 { 4207 int no_suffix = F_ISSET(envflags, MDB_NOSUBDIR|MDB_NOLOCK); 4208 fname->mn_alloced = 0; 4209 #ifdef _WIN32 4210 return utf8_to_utf16(path, fname, no_suffix ? 0 : MDB_SUFFLEN); 4211 #else 4212 fname->mn_len = strlen(path); 4213 if (no_suffix) 4214 fname->mn_val = (char *) path; 4215 else if ((fname->mn_val = malloc(fname->mn_len + MDB_SUFFLEN+1)) != NULL) { 4216 fname->mn_alloced = 1; 4217 strcpy(fname->mn_val, path); 4218 } 4219 else 4220 return ENOMEM; 4221 return MDB_SUCCESS; 4222 #endif 4223 } 4224 4225 /** Destroy \b fname from #mdb_fname_init() */ 4226 #define mdb_fname_destroy(fname) \ 4227 do { if ((fname).mn_alloced) free((fname).mn_val); } while (0) 4228 4229 #ifdef O_CLOEXEC /* POSIX.1-2008: Set FD_CLOEXEC atomically at open() */ 4230 # define MDB_CLOEXEC O_CLOEXEC 4231 #else 4232 # define MDB_CLOEXEC 0 4233 #endif 4234 4235 /** File type, access mode etc. for #mdb_fopen() */ 4236 enum mdb_fopen_type { 4237 #ifdef _WIN32 4238 MDB_O_RDONLY, MDB_O_RDWR, MDB_O_META, MDB_O_COPY, MDB_O_LOCKS 4239 #else 4240 /* A comment in mdb_fopen() explains some O_* flag choices. */ 4241 MDB_O_RDONLY= O_RDONLY, /**< for RDONLY me_fd */ 4242 MDB_O_RDWR = O_RDWR |O_CREAT, /**< for me_fd */ 4243 MDB_O_META = O_WRONLY|MDB_DSYNC |MDB_CLOEXEC, /**< for me_mfd */ 4244 MDB_O_COPY = O_WRONLY|O_CREAT|O_EXCL|MDB_CLOEXEC, /**< for #mdb_env_copy() */ 4245 /** Bitmask for open() flags in enum #mdb_fopen_type. The other bits 4246 * distinguish otherwise-equal MDB_O_* constants from each other. 4247 */ 4248 MDB_O_MASK = MDB_O_RDWR|MDB_CLOEXEC | MDB_O_RDONLY|MDB_O_META|MDB_O_COPY, 4249 MDB_O_LOCKS = MDB_O_RDWR|MDB_CLOEXEC | ((MDB_O_MASK+1) & ~MDB_O_MASK) /**< for me_lfd */ 4250 #endif 4251 }; 4252 4253 /** Open an LMDB file. 4254 * @param[in] env The LMDB environment. 4255 * @param[in,out] fname Path from from #mdb_fname_init(). A suffix is 4256 * appended if necessary to create the filename, without changing mn_len. 4257 * @param[in] which Determines file type, access mode, etc. 4258 * @param[in] mode The Unix permissions for the file, if we create it. 4259 * @param[out] res Resulting file handle. 4260 * @return 0 on success, non-zero on failure. 4261 */ 4262 static int ESECT 4263 mdb_fopen(const MDB_env *env, MDB_name *fname, 4264 enum mdb_fopen_type which, mdb_mode_t mode, 4265 HANDLE *res) 4266 { 4267 int rc = MDB_SUCCESS; 4268 HANDLE fd; 4269 #ifdef _WIN32 4270 DWORD acc, share, disp, attrs; 4271 #else 4272 int flags; 4273 #endif 4274 4275 if (fname->mn_alloced) /* modifiable copy */ 4276 mdb_name_cpy(fname->mn_val + fname->mn_len, 4277 mdb_suffixes[which==MDB_O_LOCKS][F_ISSET(env->me_flags, MDB_NOSUBDIR)]); 4278 4279 /* The directory must already exist. Usually the file need not. 4280 * MDB_O_META requires the file because we already created it using 4281 * MDB_O_RDWR. MDB_O_COPY must not overwrite an existing file. 4282 * 4283 * With MDB_O_COPY we do not want the OS to cache the writes, since 4284 * the source data is already in the OS cache. 4285 * 4286 * The lockfile needs FD_CLOEXEC (close file descriptor on exec*()) 4287 * to avoid the flock() issues noted under Caveats in lmdb.h. 4288 * Also set it for other filehandles which the user cannot get at 4289 * and close himself, which he may need after fork(). I.e. all but 4290 * me_fd, which programs do use via mdb_env_get_fd(). 4291 */ 4292 4293 #ifdef _WIN32 4294 acc = GENERIC_READ|GENERIC_WRITE; 4295 share = FILE_SHARE_READ|FILE_SHARE_WRITE; 4296 disp = OPEN_ALWAYS; 4297 attrs = FILE_ATTRIBUTE_NORMAL; 4298 switch (which) { 4299 case MDB_O_RDONLY: /* read-only datafile */ 4300 acc = GENERIC_READ; 4301 disp = OPEN_EXISTING; 4302 break; 4303 case MDB_O_META: /* for writing metapages */ 4304 acc = GENERIC_WRITE; 4305 disp = OPEN_EXISTING; 4306 attrs = FILE_ATTRIBUTE_NORMAL|FILE_FLAG_WRITE_THROUGH; 4307 break; 4308 case MDB_O_COPY: /* mdb_env_copy() & co */ 4309 acc = GENERIC_WRITE; 4310 share = 0; 4311 disp = CREATE_NEW; 4312 attrs = FILE_FLAG_NO_BUFFERING|FILE_FLAG_WRITE_THROUGH; 4313 break; 4314 default: break; /* silence gcc -Wswitch (not all enum values handled) */ 4315 } 4316 fd = CreateFileW(fname->mn_val, acc, share, NULL, disp, attrs, NULL); 4317 #else 4318 fd = open(fname->mn_val, which & MDB_O_MASK, mode); 4319 #endif 4320 4321 if (fd == INVALID_HANDLE_VALUE) 4322 rc = ErrCode(); 4323 #ifndef _WIN32 4324 else { 4325 if (which != MDB_O_RDONLY && which != MDB_O_RDWR) { 4326 /* Set CLOEXEC if we could not pass it to open() */ 4327 if (!MDB_CLOEXEC && (flags = fcntl(fd, F_GETFD)) != -1) 4328 (void) fcntl(fd, F_SETFD, flags | FD_CLOEXEC); 4329 } 4330 if (which == MDB_O_COPY && env->me_psize >= env->me_os_psize) { 4331 /* This may require buffer alignment. There is no portable 4332 * way to ask how much, so we require OS pagesize alignment. 4333 */ 4334 # ifdef F_NOCACHE /* __APPLE__ */ 4335 (void) fcntl(fd, F_NOCACHE, 1); 4336 # elif defined O_DIRECT 4337 /* open(...O_DIRECT...) would break on filesystems without 4338 * O_DIRECT support (ITS#7682). Try to set it here instead. 4339 */ 4340 if ((flags = fcntl(fd, F_GETFL)) != -1) 4341 (void) fcntl(fd, F_SETFL, flags | O_DIRECT); 4342 # endif 4343 } 4344 } 4345 #endif /* !_WIN32 */ 4346 4347 *res = fd; 4348 return rc; 4349 } 4350 4351 4352 #ifdef BROKEN_FDATASYNC 4353 #include <sys/utsname.h> 4354 #include <sys/vfs.h> 4355 #endif 4356 4357 /** Further setup required for opening an LMDB environment 4358 */ 4359 static int ESECT 4360 mdb_env_open2(MDB_env *env) 4361 { 4362 unsigned int flags = env->me_flags; 4363 int i, newenv = 0, rc; 4364 MDB_meta meta; 4365 4366 #ifdef _WIN32 4367 /* See if we should use QueryLimited */ 4368 rc = GetVersion(); 4369 if ((rc & 0xff) > 5) 4370 env->me_pidquery = MDB_PROCESS_QUERY_LIMITED_INFORMATION; 4371 else 4372 env->me_pidquery = PROCESS_QUERY_INFORMATION; 4373 #endif /* _WIN32 */ 4374 4375 #ifdef BROKEN_FDATASYNC 4376 /* ext3/ext4 fdatasync is broken on some older Linux kernels. 4377 * https://lkml.org/lkml/2012/9/3/83 4378 * Kernels after 3.6-rc6 are known good. 4379 * https://lkml.org/lkml/2012/9/10/556 4380 * See if the DB is on ext3/ext4, then check for new enough kernel 4381 * Kernels 2.6.32.60, 2.6.34.15, 3.2.30, and 3.5.4 are also known 4382 * to be patched. 4383 */ 4384 { 4385 struct statfs st; 4386 fstatfs(env->me_fd, &st); 4387 while (st.f_type == 0xEF53) { 4388 struct utsname uts; 4389 int i; 4390 uname(&uts); 4391 if (uts.release[0] < '3') { 4392 if (!strncmp(uts.release, "2.6.32.", 7)) { 4393 i = atoi(uts.release+7); 4394 if (i >= 60) 4395 break; /* 2.6.32.60 and newer is OK */ 4396 } else if (!strncmp(uts.release, "2.6.34.", 7)) { 4397 i = atoi(uts.release+7); 4398 if (i >= 15) 4399 break; /* 2.6.34.15 and newer is OK */ 4400 } 4401 } else if (uts.release[0] == '3') { 4402 i = atoi(uts.release+2); 4403 if (i > 5) 4404 break; /* 3.6 and newer is OK */ 4405 if (i == 5) { 4406 i = atoi(uts.release+4); 4407 if (i >= 4) 4408 break; /* 3.5.4 and newer is OK */ 4409 } else if (i == 2) { 4410 i = atoi(uts.release+4); 4411 if (i >= 30) 4412 break; /* 3.2.30 and newer is OK */ 4413 } 4414 } else { /* 4.x and newer is OK */ 4415 break; 4416 } 4417 env->me_flags |= MDB_FSYNCONLY; 4418 break; 4419 } 4420 } 4421 #endif 4422 4423 if ((i = mdb_env_read_header(env, &meta)) != 0) { 4424 if (i != ENOENT) 4425 return i; 4426 DPUTS("new mdbenv"); 4427 newenv = 1; 4428 env->me_psize = env->me_os_psize; 4429 if (env->me_psize > MAX_PAGESIZE) 4430 env->me_psize = MAX_PAGESIZE; 4431 memset(&meta, 0, sizeof(meta)); 4432 mdb_env_init_meta0(env, &meta); 4433 meta.mm_mapsize = DEFAULT_MAPSIZE; 4434 } else { 4435 env->me_psize = meta.mm_psize; 4436 } 4437 4438 /* Was a mapsize configured? */ 4439 if (!env->me_mapsize) { 4440 env->me_mapsize = meta.mm_mapsize; 4441 } 4442 { 4443 /* Make sure mapsize >= committed data size. Even when using 4444 * mm_mapsize, which could be broken in old files (ITS#7789). 4445 */ 4446 size_t minsize = (meta.mm_last_pg + 1) * meta.mm_psize; 4447 if (env->me_mapsize < minsize) 4448 env->me_mapsize = minsize; 4449 } 4450 meta.mm_mapsize = env->me_mapsize; 4451 4452 if (newenv && !(flags & MDB_FIXEDMAP)) { 4453 /* mdb_env_map() may grow the datafile. Write the metapages 4454 * first, so the file will be valid if initialization fails. 4455 * Except with FIXEDMAP, since we do not yet know mm_address. 4456 * We could fill in mm_address later, but then a different 4457 * program might end up doing that - one with a memory layout 4458 * and map address which does not suit the main program. 4459 */ 4460 rc = mdb_env_init_meta(env, &meta); 4461 if (rc) 4462 return rc; 4463 newenv = 0; 4464 } 4465 4466 rc = mdb_env_map(env, (flags & MDB_FIXEDMAP) ? meta.mm_address : NULL); 4467 if (rc) 4468 return rc; 4469 4470 if (newenv) { 4471 if (flags & MDB_FIXEDMAP) 4472 meta.mm_address = env->me_map; 4473 i = mdb_env_init_meta(env, &meta); 4474 if (i != MDB_SUCCESS) { 4475 return i; 4476 } 4477 } 4478 4479 env->me_maxfree_1pg = (env->me_psize - PAGEHDRSZ) / sizeof(pgno_t) - 1; 4480 env->me_nodemax = (((env->me_psize - PAGEHDRSZ) / MDB_MINKEYS) & -2) 4481 - sizeof(indx_t); 4482 #if !(MDB_MAXKEYSIZE) 4483 env->me_maxkey = env->me_nodemax - (NODESIZE + sizeof(MDB_db)); 4484 #endif 4485 env->me_maxpg = env->me_mapsize / env->me_psize; 4486 4487 #if MDB_DEBUG 4488 { 4489 MDB_meta *meta = mdb_env_pick_meta(env); 4490 MDB_db *db = &meta->mm_dbs[MAIN_DBI]; 4491 4492 DPRINTF(("opened database version %u, pagesize %u", 4493 meta->mm_version, env->me_psize)); 4494 DPRINTF(("using meta page %d", (int) (meta->mm_txnid & 1))); 4495 DPRINTF(("depth: %u", db->md_depth)); 4496 DPRINTF(("entries: %"Z"u", db->md_entries)); 4497 DPRINTF(("branch pages: %"Z"u", db->md_branch_pages)); 4498 DPRINTF(("leaf pages: %"Z"u", db->md_leaf_pages)); 4499 DPRINTF(("overflow pages: %"Z"u", db->md_overflow_pages)); 4500 DPRINTF(("root: %"Z"u", db->md_root)); 4501 } 4502 #endif 4503 4504 return MDB_SUCCESS; 4505 } 4506 4507 4508 /** Release a reader thread's slot in the reader lock table. 4509 * This function is called automatically when a thread exits. 4510 * @param[in] ptr This points to the slot in the reader lock table. 4511 */ 4512 static void 4513 mdb_env_reader_dest(void *ptr) 4514 { 4515 MDB_reader *reader = ptr; 4516 4517 #ifndef _WIN32 4518 if (reader->mr_pid == getpid()) /* catch pthread_exit() in child process */ 4519 #endif 4520 /* We omit the mutex, so do this atomically (i.e. skip mr_txnid) */ 4521 reader->mr_pid = 0; 4522 } 4523 4524 #ifdef _WIN32 4525 /** Junk for arranging thread-specific callbacks on Windows. This is 4526 * necessarily platform and compiler-specific. Windows supports up 4527 * to 1088 keys. Let's assume nobody opens more than 64 environments 4528 * in a single process, for now. They can override this if needed. 4529 */ 4530 #ifndef MAX_TLS_KEYS 4531 #define MAX_TLS_KEYS 64 4532 #endif 4533 static pthread_key_t mdb_tls_keys[MAX_TLS_KEYS]; 4534 static int mdb_tls_nkeys; 4535 4536 static void NTAPI mdb_tls_callback(PVOID module, DWORD reason, PVOID ptr) 4537 { 4538 int i; 4539 switch(reason) { 4540 case DLL_PROCESS_ATTACH: break; 4541 case DLL_THREAD_ATTACH: break; 4542 case DLL_THREAD_DETACH: 4543 for (i=0; i<mdb_tls_nkeys; i++) { 4544 MDB_reader *r = pthread_getspecific(mdb_tls_keys[i]); 4545 if (r) { 4546 mdb_env_reader_dest(r); 4547 } 4548 } 4549 break; 4550 case DLL_PROCESS_DETACH: break; 4551 } 4552 } 4553 #ifdef __GNUC__ 4554 #ifdef _WIN64 4555 const PIMAGE_TLS_CALLBACK mdb_tls_cbp __attribute__((section (".CRT$XLB"))) = mdb_tls_callback; 4556 #else 4557 PIMAGE_TLS_CALLBACK mdb_tls_cbp __attribute__((section (".CRT$XLB"))) = mdb_tls_callback; 4558 #endif 4559 #else 4560 #ifdef _WIN64 4561 /* Force some symbol references. 4562 * _tls_used forces the linker to create the TLS directory if not already done 4563 * mdb_tls_cbp prevents whole-program-optimizer from dropping the symbol. 4564 */ 4565 #pragma comment(linker, "/INCLUDE:_tls_used") 4566 #pragma comment(linker, "/INCLUDE:mdb_tls_cbp") 4567 #pragma const_seg(".CRT$XLB") 4568 extern const PIMAGE_TLS_CALLBACK mdb_tls_cbp; 4569 const PIMAGE_TLS_CALLBACK mdb_tls_cbp = mdb_tls_callback; 4570 #pragma const_seg() 4571 #else /* _WIN32 */ 4572 #pragma comment(linker, "/INCLUDE:__tls_used") 4573 #pragma comment(linker, "/INCLUDE:_mdb_tls_cbp") 4574 #pragma data_seg(".CRT$XLB") 4575 PIMAGE_TLS_CALLBACK mdb_tls_cbp = mdb_tls_callback; 4576 #pragma data_seg() 4577 #endif /* WIN 32/64 */ 4578 #endif /* !__GNUC__ */ 4579 #endif 4580 4581 /** Downgrade the exclusive lock on the region back to shared */ 4582 static int ESECT 4583 mdb_env_share_locks(MDB_env *env, int *excl) 4584 { 4585 int rc = 0; 4586 MDB_meta *meta = mdb_env_pick_meta(env); 4587 4588 env->me_txns->mti_txnid = meta->mm_txnid; 4589 4590 #ifdef _WIN32 4591 { 4592 OVERLAPPED ov; 4593 /* First acquire a shared lock. The Unlock will 4594 * then release the existing exclusive lock. 4595 */ 4596 memset(&ov, 0, sizeof(ov)); 4597 if (!LockFileEx(env->me_lfd, 0, 0, 1, 0, &ov)) { 4598 rc = ErrCode(); 4599 } else { 4600 UnlockFile(env->me_lfd, 0, 0, 1, 0); 4601 *excl = 0; 4602 } 4603 } 4604 #else 4605 { 4606 struct flock lock_info; 4607 /* The shared lock replaces the existing lock */ 4608 memset((void *)&lock_info, 0, sizeof(lock_info)); 4609 lock_info.l_type = F_RDLCK; 4610 lock_info.l_whence = SEEK_SET; 4611 lock_info.l_start = 0; 4612 lock_info.l_len = 1; 4613 while ((rc = fcntl(env->me_lfd, F_SETLK, &lock_info)) && 4614 (rc = ErrCode()) == EINTR) ; 4615 *excl = rc ? -1 : 0; /* error may mean we lost the lock */ 4616 } 4617 #endif 4618 4619 return rc; 4620 } 4621 4622 /** Try to get exclusive lock, otherwise shared. 4623 * Maintain *excl = -1: no/unknown lock, 0: shared, 1: exclusive. 4624 */ 4625 static int ESECT 4626 mdb_env_excl_lock(MDB_env *env, int *excl) 4627 { 4628 int rc = 0; 4629 #ifdef _WIN32 4630 if (LockFile(env->me_lfd, 0, 0, 1, 0)) { 4631 *excl = 1; 4632 } else { 4633 OVERLAPPED ov; 4634 memset(&ov, 0, sizeof(ov)); 4635 if (LockFileEx(env->me_lfd, 0, 0, 1, 0, &ov)) { 4636 *excl = 0; 4637 } else { 4638 rc = ErrCode(); 4639 } 4640 } 4641 #else 4642 struct flock lock_info; 4643 memset((void *)&lock_info, 0, sizeof(lock_info)); 4644 lock_info.l_type = F_WRLCK; 4645 lock_info.l_whence = SEEK_SET; 4646 lock_info.l_start = 0; 4647 lock_info.l_len = 1; 4648 while ((rc = fcntl(env->me_lfd, F_SETLK, &lock_info)) && 4649 (rc = ErrCode()) == EINTR) ; 4650 if (!rc) { 4651 *excl = 1; 4652 } else 4653 # ifndef MDB_USE_POSIX_MUTEX 4654 if (*excl < 0) /* always true when MDB_USE_POSIX_MUTEX */ 4655 # endif 4656 { 4657 lock_info.l_type = F_RDLCK; 4658 while ((rc = fcntl(env->me_lfd, F_SETLKW, &lock_info)) && 4659 (rc = ErrCode()) == EINTR) ; 4660 if (rc == 0) 4661 *excl = 0; 4662 } 4663 #endif 4664 return rc; 4665 } 4666 4667 #ifdef MDB_USE_HASH 4668 /* 4669 * hash_64 - 64 bit Fowler/Noll/Vo-0 FNV-1a hash code 4670 * 4671 * @(#) $Revision: 5.1 $ 4672 * @(#) $Id: hash_64a.c,v 5.1 2009/06/30 09:01:38 chongo Exp $ 4673 * @(#) $Source: /usr/local/src/cmd/fnv/RCS/hash_64a.c,v $ 4674 * 4675 * http://www.isthe.com/chongo/tech/comp/fnv/index.html 4676 * 4677 *** 4678 * 4679 * Please do not copyright this code. This code is in the public domain. 4680 * 4681 * LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 4682 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO 4683 * EVENT SHALL LANDON CURT NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR 4684 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF 4685 * USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR 4686 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR 4687 * PERFORMANCE OF THIS SOFTWARE. 4688 * 4689 * By: 4690 * chongo <Landon Curt Noll> /\oo/\ 4691 * http://www.isthe.com/chongo/ 4692 * 4693 * Share and Enjoy! :-) 4694 */ 4695 4696 typedef unsigned long long mdb_hash_t; 4697 #define MDB_HASH_INIT ((mdb_hash_t)0xcbf29ce484222325ULL) 4698 4699 /** perform a 64 bit Fowler/Noll/Vo FNV-1a hash on a buffer 4700 * @param[in] val value to hash 4701 * @param[in] hval initial value for hash 4702 * @return 64 bit hash 4703 * 4704 * NOTE: To use the recommended 64 bit FNV-1a hash, use MDB_HASH_INIT as the 4705 * hval arg on the first call. 4706 */ 4707 static mdb_hash_t 4708 mdb_hash_val(MDB_val *val, mdb_hash_t hval) 4709 { 4710 unsigned char *s = (unsigned char *)val->mv_data; /* unsigned string */ 4711 unsigned char *end = s + val->mv_size; 4712 /* 4713 * FNV-1a hash each octet of the string 4714 */ 4715 while (s < end) { 4716 /* xor the bottom with the current octet */ 4717 hval ^= (mdb_hash_t)*s++; 4718 4719 /* multiply by the 64 bit FNV magic prime mod 2^64 */ 4720 hval += (hval << 1) + (hval << 4) + (hval << 5) + 4721 (hval << 7) + (hval << 8) + (hval << 40); 4722 } 4723 /* return our new hash value */ 4724 return hval; 4725 } 4726 4727 /** Hash the string and output the encoded hash. 4728 * This uses modified RFC1924 Ascii85 encoding to accommodate systems with 4729 * very short name limits. We don't care about the encoding being reversible, 4730 * we just want to preserve as many bits of the input as possible in a 4731 * small printable string. 4732 * @param[in] str string to hash 4733 * @param[out] encbuf an array of 11 chars to hold the hash 4734 */ 4735 static const char mdb_a85[]= "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!#$%&()*+-;<=>?@^_`{|}~"; 4736 4737 static void ESECT 4738 mdb_pack85(unsigned long l, char *out) 4739 { 4740 int i; 4741 4742 for (i=0; i<5; i++) { 4743 *out++ = mdb_a85[l % 85]; 4744 l /= 85; 4745 } 4746 } 4747 4748 static void ESECT 4749 mdb_hash_enc(MDB_val *val, char *encbuf) 4750 { 4751 mdb_hash_t h = mdb_hash_val(val, MDB_HASH_INIT); 4752 4753 mdb_pack85(h, encbuf); 4754 mdb_pack85(h>>32, encbuf+5); 4755 encbuf[10] = '\0'; 4756 } 4757 #endif 4758 4759 /** Open and/or initialize the lock region for the environment. 4760 * @param[in] env The LMDB environment. 4761 * @param[in] fname Filename + scratch area, from #mdb_fname_init(). 4762 * @param[in] mode The Unix permissions for the file, if we create it. 4763 * @param[in,out] excl In -1, out lock type: -1 none, 0 shared, 1 exclusive 4764 * @return 0 on success, non-zero on failure. 4765 */ 4766 static int ESECT 4767 mdb_env_setup_locks(MDB_env *env, MDB_name *fname, int mode, int *excl) 4768 { 4769 #ifdef _WIN32 4770 # define MDB_ERRCODE_ROFS ERROR_WRITE_PROTECT 4771 #else 4772 # define MDB_ERRCODE_ROFS EROFS 4773 #endif 4774 int rc; 4775 off_t size, rsize; 4776 4777 rc = mdb_fopen(env, fname, MDB_O_LOCKS, mode, &env->me_lfd); 4778 if (rc) { 4779 /* Omit lockfile if read-only env on read-only filesystem */ 4780 if (rc == MDB_ERRCODE_ROFS && (env->me_flags & MDB_RDONLY)) { 4781 return MDB_SUCCESS; 4782 } 4783 goto fail; 4784 } 4785 4786 if (!(env->me_flags & MDB_NOTLS)) { 4787 rc = pthread_key_create(&env->me_txkey, mdb_env_reader_dest); 4788 if (rc) 4789 goto fail; 4790 env->me_flags |= MDB_ENV_TXKEY; 4791 #ifdef _WIN32 4792 /* Windows TLS callbacks need help finding their TLS info. */ 4793 if (mdb_tls_nkeys >= MAX_TLS_KEYS) { 4794 rc = MDB_TLS_FULL; 4795 goto fail; 4796 } 4797 mdb_tls_keys[mdb_tls_nkeys++] = env->me_txkey; 4798 #endif 4799 } 4800 4801 /* Try to get exclusive lock. If we succeed, then 4802 * nobody is using the lock region and we should initialize it. 4803 */ 4804 if ((rc = mdb_env_excl_lock(env, excl))) goto fail; 4805 4806 #ifdef _WIN32 4807 size = GetFileSize(env->me_lfd, NULL); 4808 #else 4809 size = lseek(env->me_lfd, 0, SEEK_END); 4810 if (size == -1) goto fail_errno; 4811 #endif 4812 rsize = (env->me_maxreaders-1) * sizeof(MDB_reader) + sizeof(MDB_txninfo); 4813 if (size < rsize && *excl > 0) { 4814 #ifdef _WIN32 4815 if (SetFilePointer(env->me_lfd, rsize, NULL, FILE_BEGIN) != (DWORD)rsize 4816 || !SetEndOfFile(env->me_lfd)) 4817 goto fail_errno; 4818 #else 4819 if (ftruncate(env->me_lfd, rsize) != 0) goto fail_errno; 4820 #endif 4821 } else { 4822 rsize = size; 4823 size = rsize - sizeof(MDB_txninfo); 4824 env->me_maxreaders = size/sizeof(MDB_reader) + 1; 4825 } 4826 { 4827 #ifdef _WIN32 4828 HANDLE mh; 4829 mh = CreateFileMapping(env->me_lfd, NULL, PAGE_READWRITE, 4830 0, 0, NULL); 4831 if (!mh) goto fail_errno; 4832 env->me_txns = MapViewOfFileEx(mh, FILE_MAP_WRITE, 0, 0, rsize, NULL); 4833 CloseHandle(mh); 4834 if (!env->me_txns) goto fail_errno; 4835 #else 4836 void *m = mmap(NULL, rsize, PROT_READ|PROT_WRITE, MAP_SHARED, 4837 env->me_lfd, 0); 4838 if (m == MAP_FAILED) goto fail_errno; 4839 env->me_txns = m; 4840 #endif 4841 } 4842 if (*excl > 0) { 4843 #ifdef _WIN32 4844 BY_HANDLE_FILE_INFORMATION stbuf; 4845 struct { 4846 DWORD volume; 4847 DWORD nhigh; 4848 DWORD nlow; 4849 } idbuf; 4850 MDB_val val; 4851 char encbuf[11]; 4852 4853 if (!mdb_sec_inited) { 4854 InitializeSecurityDescriptor(&mdb_null_sd, 4855 SECURITY_DESCRIPTOR_REVISION); 4856 SetSecurityDescriptorDacl(&mdb_null_sd, TRUE, 0, FALSE); 4857 mdb_all_sa.nLength = sizeof(SECURITY_ATTRIBUTES); 4858 mdb_all_sa.bInheritHandle = FALSE; 4859 mdb_all_sa.lpSecurityDescriptor = &mdb_null_sd; 4860 mdb_sec_inited = 1; 4861 } 4862 if (!GetFileInformationByHandle(env->me_lfd, &stbuf)) goto fail_errno; 4863 idbuf.volume = stbuf.dwVolumeSerialNumber; 4864 idbuf.nhigh = stbuf.nFileIndexHigh; 4865 idbuf.nlow = stbuf.nFileIndexLow; 4866 val.mv_data = &idbuf; 4867 val.mv_size = sizeof(idbuf); 4868 mdb_hash_enc(&val, encbuf); 4869 sprintf(env->me_txns->mti_rmname, "Global\\MDBr%s", encbuf); 4870 sprintf(env->me_txns->mti_wmname, "Global\\MDBw%s", encbuf); 4871 env->me_rmutex = CreateMutexA(&mdb_all_sa, FALSE, env->me_txns->mti_rmname); 4872 if (!env->me_rmutex) goto fail_errno; 4873 env->me_wmutex = CreateMutexA(&mdb_all_sa, FALSE, env->me_txns->mti_wmname); 4874 if (!env->me_wmutex) goto fail_errno; 4875 #elif defined(MDB_USE_POSIX_SEM) 4876 struct stat stbuf; 4877 struct { 4878 dev_t dev; 4879 ino_t ino; 4880 } idbuf; 4881 MDB_val val; 4882 char encbuf[11]; 4883 4884 #if defined(__NetBSD__) 4885 #define MDB_SHORT_SEMNAMES 1 /* limited to 14 chars */ 4886 #endif 4887 if (fstat(env->me_lfd, &stbuf)) goto fail_errno; 4888 idbuf.dev = stbuf.st_dev; 4889 idbuf.ino = stbuf.st_ino; 4890 val.mv_data = &idbuf; 4891 val.mv_size = sizeof(idbuf); 4892 mdb_hash_enc(&val, encbuf); 4893 #ifdef MDB_SHORT_SEMNAMES 4894 encbuf[9] = '\0'; /* drop name from 15 chars to 14 chars */ 4895 #endif 4896 4897 #define DEF_STR(x) #x 4898 #define DEF_TO_STRING(x) DEF_STR(x) 4899 sprintf(env->me_txns->mti_rmname, DEF_TO_STRING(MDB_SEM_NAME_PREFIX) "/MDBr%s", encbuf); 4900 sprintf(env->me_txns->mti_wmname, DEF_TO_STRING(MDB_SEM_NAME_PREFIX) "/MDBw%s", encbuf); 4901 #undef DEF_STR 4902 #undef DEF_TO_STRING 4903 4904 printf("mdb_env_setup_locks: using semnames '%s' (%d), '%s' (%d)\n", 4905 env->me_txns->mti_rmname, strlen(env->me_txns->mti_rmname), 4906 env->me_txns->mti_wmname, strlen(env->me_txns->mti_wmname)); 4907 /* Clean up after a previous run, if needed: Try to 4908 * remove both semaphores before doing anything else. 4909 */ 4910 sem_unlink(env->me_txns->mti_rmname); 4911 sem_unlink(env->me_txns->mti_wmname); 4912 env->me_rmutex = sem_open(env->me_txns->mti_rmname, 4913 O_CREAT|O_EXCL, mode, 1); 4914 if (env->me_rmutex == SEM_FAILED) goto fail_errno; 4915 env->me_wmutex = sem_open(env->me_txns->mti_wmname, 4916 O_CREAT|O_EXCL, mode, 1); 4917 if (env->me_wmutex == SEM_FAILED) goto fail_errno; 4918 #else /* MDB_USE_POSIX_MUTEX: */ 4919 pthread_mutexattr_t mattr; 4920 4921 /* Solaris needs this before initing a robust mutex. Otherwise 4922 * it may skip the init and return EBUSY "seems someone already 4923 * inited" or EINVAL "it was inited differently". 4924 */ 4925 memset(env->me_txns->mti_rmutex, 0, sizeof(*env->me_txns->mti_rmutex)); 4926 memset(env->me_txns->mti_wmutex, 0, sizeof(*env->me_txns->mti_wmutex)); 4927 4928 if ((rc = pthread_mutexattr_init(&mattr))) 4929 goto fail; 4930 4931 rc = pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_SHARED); 4932 #ifdef MDB_ROBUST_SUPPORTED 4933 if (!rc) rc = pthread_mutexattr_setrobust(&mattr, PTHREAD_MUTEX_ROBUST); 4934 #endif 4935 if (!rc) rc = pthread_mutex_init(env->me_txns->mti_rmutex, &mattr); 4936 if (!rc) rc = pthread_mutex_init(env->me_txns->mti_wmutex, &mattr); 4937 pthread_mutexattr_destroy(&mattr); 4938 if (rc) 4939 goto fail; 4940 #endif /* _WIN32 || MDB_USE_POSIX_SEM */ 4941 4942 env->me_txns->mti_magic = MDB_MAGIC; 4943 env->me_txns->mti_format = MDB_LOCK_FORMAT; 4944 env->me_txns->mti_txnid = 0; 4945 env->me_txns->mti_numreaders = 0; 4946 4947 } else { 4948 if (env->me_txns->mti_magic != MDB_MAGIC) { 4949 DPUTS("lock region has invalid magic"); 4950 rc = MDB_INVALID; 4951 goto fail; 4952 } 4953 if (env->me_txns->mti_format != MDB_LOCK_FORMAT) { 4954 DPRINTF(("lock region has format+version 0x%x, expected 0x%x", 4955 env->me_txns->mti_format, MDB_LOCK_FORMAT)); 4956 rc = MDB_VERSION_MISMATCH; 4957 goto fail; 4958 } 4959 rc = ErrCode(); 4960 if (rc && rc != EACCES && rc != EAGAIN) { 4961 goto fail; 4962 } 4963 #ifdef _WIN32 4964 env->me_rmutex = OpenMutexA(SYNCHRONIZE, FALSE, env->me_txns->mti_rmname); 4965 if (!env->me_rmutex) goto fail_errno; 4966 env->me_wmutex = OpenMutexA(SYNCHRONIZE, FALSE, env->me_txns->mti_wmname); 4967 if (!env->me_wmutex) goto fail_errno; 4968 #elif defined(MDB_USE_POSIX_SEM) 4969 env->me_rmutex = sem_open(env->me_txns->mti_rmname, 0); 4970 if (env->me_rmutex == SEM_FAILED) goto fail_errno; 4971 env->me_wmutex = sem_open(env->me_txns->mti_wmname, 0); 4972 if (env->me_wmutex == SEM_FAILED) goto fail_errno; 4973 #endif 4974 } 4975 return MDB_SUCCESS; 4976 4977 fail_errno: 4978 rc = ErrCode(); 4979 fail: 4980 return rc; 4981 } 4982 4983 /** Only a subset of the @ref mdb_env flags can be changed 4984 * at runtime. Changing other flags requires closing the 4985 * environment and re-opening it with the new flags. 4986 */ 4987 #define CHANGEABLE (MDB_NOSYNC|MDB_NOMETASYNC|MDB_MAPASYNC|MDB_NOMEMINIT) 4988 #define CHANGELESS (MDB_FIXEDMAP|MDB_NOSUBDIR|MDB_RDONLY| \ 4989 MDB_WRITEMAP|MDB_NOTLS|MDB_NOLOCK|MDB_NORDAHEAD) 4990 4991 #if VALID_FLAGS & PERSISTENT_FLAGS & (CHANGEABLE|CHANGELESS) 4992 # error "Persistent DB flags & env flags overlap, but both go in mm_flags" 4993 #endif 4994 4995 int ESECT 4996 mdb_env_open(MDB_env *env, const char *path, unsigned int flags, mdb_mode_t mode) 4997 { 4998 int rc, excl = -1; 4999 MDB_name fname; 5000 5001 if (env->me_fd!=INVALID_HANDLE_VALUE || (flags & ~(CHANGEABLE|CHANGELESS))) 5002 return EINVAL; 5003 5004 flags |= env->me_flags; 5005 5006 rc = mdb_fname_init(path, flags, &fname); 5007 if (rc) 5008 return rc; 5009 5010 if (flags & MDB_RDONLY) { 5011 /* silently ignore WRITEMAP when we're only getting read access */ 5012 flags &= ~MDB_WRITEMAP; 5013 } else { 5014 if (!((env->me_free_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX)) && 5015 (env->me_dirty_list = calloc(MDB_IDL_UM_SIZE, sizeof(MDB_ID2))))) 5016 rc = ENOMEM; 5017 } 5018 env->me_flags = flags |= MDB_ENV_ACTIVE; 5019 if (rc) 5020 goto leave; 5021 5022 env->me_path = strdup(path); 5023 env->me_dbxs = calloc(env->me_maxdbs, sizeof(MDB_dbx)); 5024 env->me_dbflags = calloc(env->me_maxdbs, sizeof(uint16_t)); 5025 env->me_dbiseqs = calloc(env->me_maxdbs, sizeof(unsigned int)); 5026 if (!(env->me_dbxs && env->me_path && env->me_dbflags && env->me_dbiseqs)) { 5027 rc = ENOMEM; 5028 goto leave; 5029 } 5030 env->me_dbxs[FREE_DBI].md_cmp = mdb_cmp_long; /* aligned MDB_INTEGERKEY */ 5031 5032 /* For RDONLY, get lockfile after we know datafile exists */ 5033 if (!(flags & (MDB_RDONLY|MDB_NOLOCK))) { 5034 rc = mdb_env_setup_locks(env, &fname, mode, &excl); 5035 if (rc) 5036 goto leave; 5037 } 5038 5039 rc = mdb_fopen(env, &fname, 5040 (flags & MDB_RDONLY) ? MDB_O_RDONLY : MDB_O_RDWR, 5041 mode, &env->me_fd); 5042 if (rc) 5043 goto leave; 5044 5045 if ((flags & (MDB_RDONLY|MDB_NOLOCK)) == MDB_RDONLY) { 5046 rc = mdb_env_setup_locks(env, &fname, mode, &excl); 5047 if (rc) 5048 goto leave; 5049 } 5050 5051 if ((rc = mdb_env_open2(env)) == MDB_SUCCESS) { 5052 if (!(flags & (MDB_RDONLY|MDB_WRITEMAP))) { 5053 /* Synchronous fd for meta writes. Needed even with 5054 * MDB_NOSYNC/MDB_NOMETASYNC, in case these get reset. 5055 */ 5056 rc = mdb_fopen(env, &fname, MDB_O_META, mode, &env->me_mfd); 5057 if (rc) 5058 goto leave; 5059 } 5060 DPRINTF(("opened dbenv %p", (void *) env)); 5061 if (excl > 0) { 5062 rc = mdb_env_share_locks(env, &excl); 5063 if (rc) 5064 goto leave; 5065 } 5066 if (!(flags & MDB_RDONLY)) { 5067 MDB_txn *txn; 5068 int tsize = sizeof(MDB_txn), size = tsize + env->me_maxdbs * 5069 (sizeof(MDB_db)+sizeof(MDB_cursor *)+sizeof(unsigned int)+1); 5070 if ((env->me_pbuf = calloc(1, env->me_psize)) && 5071 (txn = calloc(1, size))) 5072 { 5073 txn->mt_dbs = (MDB_db *)((char *)txn + tsize); 5074 txn->mt_cursors = (MDB_cursor **)(txn->mt_dbs + env->me_maxdbs); 5075 txn->mt_dbiseqs = (unsigned int *)(txn->mt_cursors + env->me_maxdbs); 5076 txn->mt_dbflags = (unsigned char *)(txn->mt_dbiseqs + env->me_maxdbs); 5077 txn->mt_env = env; 5078 txn->mt_dbxs = env->me_dbxs; 5079 txn->mt_flags = MDB_TXN_FINISHED; 5080 env->me_txn0 = txn; 5081 } else { 5082 rc = ENOMEM; 5083 } 5084 } 5085 } 5086 5087 leave: 5088 if (rc) { 5089 mdb_env_close0(env, excl); 5090 } 5091 mdb_fname_destroy(fname); 5092 return rc; 5093 } 5094 5095 /** Destroy resources from mdb_env_open(), clear our readers & DBIs */ 5096 static void ESECT 5097 mdb_env_close0(MDB_env *env, int excl) 5098 { 5099 int i; 5100 5101 if (!(env->me_flags & MDB_ENV_ACTIVE)) 5102 return; 5103 5104 /* Doing this here since me_dbxs may not exist during mdb_env_close */ 5105 if (env->me_dbxs) { 5106 for (i = env->me_maxdbs; --i >= CORE_DBS; ) 5107 free(env->me_dbxs[i].md_name.mv_data); 5108 free(env->me_dbxs); 5109 } 5110 5111 free(env->me_pbuf); 5112 free(env->me_dbiseqs); 5113 free(env->me_dbflags); 5114 free(env->me_path); 5115 free(env->me_dirty_list); 5116 free(env->me_txn0); 5117 mdb_midl_free(env->me_free_pgs); 5118 5119 if (env->me_flags & MDB_ENV_TXKEY) { 5120 pthread_key_delete(env->me_txkey); 5121 #ifdef _WIN32 5122 /* Delete our key from the global list */ 5123 for (i=0; i<mdb_tls_nkeys; i++) 5124 if (mdb_tls_keys[i] == env->me_txkey) { 5125 mdb_tls_keys[i] = mdb_tls_keys[mdb_tls_nkeys-1]; 5126 mdb_tls_nkeys--; 5127 break; 5128 } 5129 #endif 5130 } 5131 5132 if (env->me_map) { 5133 munmap(env->me_map, env->me_mapsize); 5134 } 5135 if (env->me_mfd != INVALID_HANDLE_VALUE) 5136 (void) close(env->me_mfd); 5137 if (env->me_fd != INVALID_HANDLE_VALUE) 5138 (void) close(env->me_fd); 5139 if (env->me_txns) { 5140 MDB_PID_T pid = getpid(); 5141 /* Clearing readers is done in this function because 5142 * me_txkey with its destructor must be disabled first. 5143 * 5144 * We skip the the reader mutex, so we touch only 5145 * data owned by this process (me_close_readers and 5146 * our readers), and clear each reader atomically. 5147 */ 5148 for (i = env->me_close_readers; --i >= 0; ) 5149 if (env->me_txns->mti_readers[i].mr_pid == pid) 5150 env->me_txns->mti_readers[i].mr_pid = 0; 5151 #ifdef _WIN32 5152 if (env->me_rmutex) { 5153 CloseHandle(env->me_rmutex); 5154 if (env->me_wmutex) CloseHandle(env->me_wmutex); 5155 } 5156 /* Windows automatically destroys the mutexes when 5157 * the last handle closes. 5158 */ 5159 #elif defined(MDB_USE_POSIX_SEM) 5160 if (env->me_rmutex != SEM_FAILED) { 5161 sem_close(env->me_rmutex); 5162 if (env->me_wmutex != SEM_FAILED) 5163 sem_close(env->me_wmutex); 5164 /* If we have the filelock: If we are the 5165 * only remaining user, clean up semaphores. 5166 */ 5167 if (excl == 0) 5168 mdb_env_excl_lock(env, &excl); 5169 if (excl > 0) { 5170 sem_unlink(env->me_txns->mti_rmname); 5171 sem_unlink(env->me_txns->mti_wmname); 5172 } 5173 } 5174 #elif defined(MDB_ROBUST_SUPPORTED) 5175 /* If we have the filelock: If we are the 5176 * only remaining user, clean up robust 5177 * mutexes. 5178 */ 5179 if (excl == 0) 5180 mdb_env_excl_lock(env, &excl); 5181 if (excl > 0) { 5182 pthread_mutex_destroy(env->me_txns->mti_rmutex); 5183 pthread_mutex_destroy(env->me_txns->mti_wmutex); 5184 } 5185 #endif 5186 munmap((void *)env->me_txns, (env->me_maxreaders-1)*sizeof(MDB_reader)+sizeof(MDB_txninfo)); 5187 } 5188 if (env->me_lfd != INVALID_HANDLE_VALUE) { 5189 #ifdef _WIN32 5190 if (excl >= 0) { 5191 /* Unlock the lockfile. Windows would have unlocked it 5192 * after closing anyway, but not necessarily at once. 5193 */ 5194 UnlockFile(env->me_lfd, 0, 0, 1, 0); 5195 } 5196 #endif 5197 (void) close(env->me_lfd); 5198 } 5199 5200 env->me_flags &= ~(MDB_ENV_ACTIVE|MDB_ENV_TXKEY); 5201 } 5202 5203 void ESECT 5204 mdb_env_close(MDB_env *env) 5205 { 5206 MDB_page *dp; 5207 5208 if (env == NULL) 5209 return; 5210 5211 VGMEMP_DESTROY(env); 5212 while ((dp = env->me_dpages) != NULL) { 5213 VGMEMP_DEFINED(&dp->mp_next, sizeof(dp->mp_next)); 5214 env->me_dpages = dp->mp_next; 5215 free(dp); 5216 } 5217 5218 mdb_env_close0(env, 0); 5219 free(env); 5220 } 5221 5222 /** Compare two items pointing at aligned size_t's */ 5223 static int 5224 mdb_cmp_long(const MDB_val *a, const MDB_val *b) 5225 { 5226 return (*(size_t *)a->mv_data < *(size_t *)b->mv_data) ? -1 : 5227 *(size_t *)a->mv_data > *(size_t *)b->mv_data; 5228 } 5229 5230 /** Compare two items pointing at aligned unsigned int's. 5231 * 5232 * This is also set as #MDB_INTEGERDUP|#MDB_DUPFIXED's #MDB_dbx.%md_dcmp, 5233 * but #mdb_cmp_clong() is called instead if the data type is size_t. 5234 */ 5235 static int 5236 mdb_cmp_int(const MDB_val *a, const MDB_val *b) 5237 { 5238 return (*(unsigned int *)a->mv_data < *(unsigned int *)b->mv_data) ? -1 : 5239 *(unsigned int *)a->mv_data > *(unsigned int *)b->mv_data; 5240 } 5241 5242 /** Compare two items pointing at unsigned ints of unknown alignment. 5243 * Nodes and keys are guaranteed to be 2-byte aligned. 5244 */ 5245 static int 5246 mdb_cmp_cint(const MDB_val *a, const MDB_val *b) 5247 { 5248 #if BYTE_ORDER == LITTLE_ENDIAN 5249 unsigned short *u, *c; 5250 int x; 5251 5252 u = (unsigned short *) ((char *) a->mv_data + a->mv_size); 5253 c = (unsigned short *) ((char *) b->mv_data + a->mv_size); 5254 do { 5255 x = *--u - *--c; 5256 } while(!x && u > (unsigned short *)a->mv_data); 5257 return x; 5258 #else 5259 unsigned short *u, *c, *end; 5260 int x; 5261 5262 end = (unsigned short *) ((char *) a->mv_data + a->mv_size); 5263 u = (unsigned short *)a->mv_data; 5264 c = (unsigned short *)b->mv_data; 5265 do { 5266 x = *u++ - *c++; 5267 } while(!x && u < end); 5268 return x; 5269 #endif 5270 } 5271 5272 /** Compare two items lexically */ 5273 static int 5274 mdb_cmp_memn(const MDB_val *a, const MDB_val *b) 5275 { 5276 int diff; 5277 ssize_t len_diff; 5278 unsigned int len; 5279 5280 len = a->mv_size; 5281 len_diff = (ssize_t) a->mv_size - (ssize_t) b->mv_size; 5282 if (len_diff > 0) { 5283 len = b->mv_size; 5284 len_diff = 1; 5285 } 5286 5287 diff = memcmp(a->mv_data, b->mv_data, len); 5288 return diff ? diff : len_diff<0 ? -1 : len_diff; 5289 } 5290 5291 /** Compare two items in reverse byte order */ 5292 static int 5293 mdb_cmp_memnr(const MDB_val *a, const MDB_val *b) 5294 { 5295 const unsigned char *p1, *p2, *p1_lim; 5296 ssize_t len_diff; 5297 int diff; 5298 5299 p1_lim = (const unsigned char *)a->mv_data; 5300 p1 = (const unsigned char *)a->mv_data + a->mv_size; 5301 p2 = (const unsigned char *)b->mv_data + b->mv_size; 5302 5303 len_diff = (ssize_t) a->mv_size - (ssize_t) b->mv_size; 5304 if (len_diff > 0) { 5305 p1_lim += len_diff; 5306 len_diff = 1; 5307 } 5308 5309 while (p1 > p1_lim) { 5310 diff = *--p1 - *--p2; 5311 if (diff) 5312 return diff; 5313 } 5314 return len_diff<0 ? -1 : len_diff; 5315 } 5316 5317 /** Search for key within a page, using binary search. 5318 * Returns the smallest entry larger or equal to the key. 5319 * If exactp is non-null, stores whether the found entry was an exact match 5320 * in *exactp (1 or 0). 5321 * Updates the cursor index with the index of the found entry. 5322 * If no entry larger or equal to the key is found, returns NULL. 5323 */ 5324 static MDB_node * 5325 mdb_node_search(MDB_cursor *mc, MDB_val *key, int *exactp) 5326 { 5327 unsigned int i = 0, nkeys; 5328 int low, high; 5329 int rc = 0; 5330 MDB_page *mp = mc->mc_pg[mc->mc_top]; 5331 MDB_node *node = NULL; 5332 MDB_val nodekey; 5333 MDB_cmp_func *cmp; 5334 DKBUF; 5335 5336 nkeys = NUMKEYS(mp); 5337 5338 DPRINTF(("searching %u keys in %s %spage %"Z"u", 5339 nkeys, IS_LEAF(mp) ? "leaf" : "branch", IS_SUBP(mp) ? "sub-" : "", 5340 mdb_dbg_pgno(mp))); 5341 5342 low = IS_LEAF(mp) ? 0 : 1; 5343 high = nkeys - 1; 5344 cmp = mc->mc_dbx->md_cmp; 5345 5346 /* Branch pages have no data, so if using integer keys, 5347 * alignment is guaranteed. Use faster mdb_cmp_int. 5348 */ 5349 if (cmp == mdb_cmp_cint && IS_BRANCH(mp)) { 5350 if (NODEPTR(mp, 1)->mn_ksize == sizeof(size_t)) 5351 cmp = mdb_cmp_long; 5352 else 5353 cmp = mdb_cmp_int; 5354 } 5355 5356 if (IS_LEAF2(mp)) { 5357 nodekey.mv_size = mc->mc_db->md_pad; 5358 node = NODEPTR(mp, 0); /* fake */ 5359 while (low <= high) { 5360 i = (low + high) >> 1; 5361 nodekey.mv_data = LEAF2KEY(mp, i, nodekey.mv_size); 5362 rc = cmp(key, &nodekey); 5363 DPRINTF(("found leaf index %u [%s], rc = %i", 5364 i, DKEY(&nodekey), rc)); 5365 if (rc == 0) 5366 break; 5367 if (rc > 0) 5368 low = i + 1; 5369 else 5370 high = i - 1; 5371 } 5372 } else { 5373 while (low <= high) { 5374 i = (low + high) >> 1; 5375 5376 node = NODEPTR(mp, i); 5377 nodekey.mv_size = NODEKSZ(node); 5378 nodekey.mv_data = NODEKEY(node); 5379 5380 rc = cmp(key, &nodekey); 5381 #if MDB_DEBUG 5382 if (IS_LEAF(mp)) 5383 DPRINTF(("found leaf index %u [%s], rc = %i", 5384 i, DKEY(&nodekey), rc)); 5385 else 5386 DPRINTF(("found branch index %u [%s -> %"Z"u], rc = %i", 5387 i, DKEY(&nodekey), NODEPGNO(node), rc)); 5388 #endif 5389 if (rc == 0) 5390 break; 5391 if (rc > 0) 5392 low = i + 1; 5393 else 5394 high = i - 1; 5395 } 5396 } 5397 5398 if (rc > 0) { /* Found entry is less than the key. */ 5399 i++; /* Skip to get the smallest entry larger than key. */ 5400 if (!IS_LEAF2(mp)) 5401 node = NODEPTR(mp, i); 5402 } 5403 if (exactp) 5404 *exactp = (rc == 0 && nkeys > 0); 5405 /* store the key index */ 5406 mc->mc_ki[mc->mc_top] = i; 5407 if (i >= nkeys) 5408 /* There is no entry larger or equal to the key. */ 5409 return NULL; 5410 5411 /* nodeptr is fake for LEAF2 */ 5412 return node; 5413 } 5414 5415 #if 0 5416 static void 5417 mdb_cursor_adjust(MDB_cursor *mc, func) 5418 { 5419 MDB_cursor *m2; 5420 5421 for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) { 5422 if (m2->mc_pg[m2->mc_top] == mc->mc_pg[mc->mc_top]) { 5423 func(mc, m2); 5424 } 5425 } 5426 } 5427 #endif 5428 5429 /** Pop a page off the top of the cursor's stack. */ 5430 static void 5431 mdb_cursor_pop(MDB_cursor *mc) 5432 { 5433 if (mc->mc_snum) { 5434 DPRINTF(("popping page %"Z"u off db %d cursor %p", 5435 mc->mc_pg[mc->mc_top]->mp_pgno, DDBI(mc), (void *) mc)); 5436 5437 mc->mc_snum--; 5438 if (mc->mc_snum) { 5439 mc->mc_top--; 5440 } else { 5441 mc->mc_flags &= ~C_INITIALIZED; 5442 } 5443 } 5444 } 5445 5446 /** Push a page onto the top of the cursor's stack. 5447 * Set #MDB_TXN_ERROR on failure. 5448 */ 5449 static int 5450 mdb_cursor_push(MDB_cursor *mc, MDB_page *mp) 5451 { 5452 DPRINTF(("pushing page %"Z"u on db %d cursor %p", mp->mp_pgno, 5453 DDBI(mc), (void *) mc)); 5454 5455 if (mc->mc_snum >= CURSOR_STACK) { 5456 mc->mc_txn->mt_flags |= MDB_TXN_ERROR; 5457 return MDB_CURSOR_FULL; 5458 } 5459 5460 mc->mc_top = mc->mc_snum++; 5461 mc->mc_pg[mc->mc_top] = mp; 5462 mc->mc_ki[mc->mc_top] = 0; 5463 5464 return MDB_SUCCESS; 5465 } 5466 5467 /** Find the address of the page corresponding to a given page number. 5468 * Set #MDB_TXN_ERROR on failure. 5469 * @param[in] mc the cursor accessing the page. 5470 * @param[in] pgno the page number for the page to retrieve. 5471 * @param[out] ret address of a pointer where the page's address will be stored. 5472 * @param[out] lvl dirty_list inheritance level of found page. 1=current txn, 0=mapped page. 5473 * @return 0 on success, non-zero on failure. 5474 */ 5475 static int 5476 mdb_page_get(MDB_cursor *mc, pgno_t pgno, MDB_page **ret, int *lvl) 5477 { 5478 MDB_txn *txn = mc->mc_txn; 5479 MDB_env *env = txn->mt_env; 5480 MDB_page *p = NULL; 5481 int level; 5482 5483 if (! (txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_WRITEMAP))) { 5484 MDB_txn *tx2 = txn; 5485 level = 1; 5486 do { 5487 MDB_ID2L dl = tx2->mt_u.dirty_list; 5488 unsigned x; 5489 /* Spilled pages were dirtied in this txn and flushed 5490 * because the dirty list got full. Bring this page 5491 * back in from the map (but don't unspill it here, 5492 * leave that unless page_touch happens again). 5493 */ 5494 if (tx2->mt_spill_pgs) { 5495 MDB_ID pn = pgno << 1; 5496 x = mdb_midl_search(tx2->mt_spill_pgs, pn); 5497 if (x <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[x] == pn) { 5498 p = (MDB_page *)(env->me_map + env->me_psize * pgno); 5499 goto done; 5500 } 5501 } 5502 if (dl[0].mid) { 5503 unsigned x = mdb_mid2l_search(dl, pgno); 5504 if (x <= dl[0].mid && dl[x].mid == pgno) { 5505 p = dl[x].mptr; 5506 goto done; 5507 } 5508 } 5509 level++; 5510 } while ((tx2 = tx2->mt_parent) != NULL); 5511 } 5512 5513 if (pgno < txn->mt_next_pgno) { 5514 level = 0; 5515 p = (MDB_page *)(env->me_map + env->me_psize * pgno); 5516 } else { 5517 DPRINTF(("page %"Z"u not found", pgno)); 5518 txn->mt_flags |= MDB_TXN_ERROR; 5519 return MDB_PAGE_NOTFOUND; 5520 } 5521 5522 done: 5523 *ret = p; 5524 if (lvl) 5525 *lvl = level; 5526 return MDB_SUCCESS; 5527 } 5528 5529 /** Finish #mdb_page_search() / #mdb_page_search_lowest(). 5530 * The cursor is at the root page, set up the rest of it. 5531 */ 5532 static int 5533 mdb_page_search_root(MDB_cursor *mc, MDB_val *key, int flags) 5534 { 5535 MDB_page *mp = mc->mc_pg[mc->mc_top]; 5536 int rc; 5537 DKBUF; 5538 5539 while (IS_BRANCH(mp)) { 5540 MDB_node *node; 5541 indx_t i; 5542 5543 DPRINTF(("branch page %"Z"u has %u keys", mp->mp_pgno, NUMKEYS(mp))); 5544 /* Don't assert on branch pages in the FreeDB. We can get here 5545 * while in the process of rebalancing a FreeDB branch page; we must 5546 * let that proceed. ITS#8336 5547 */ 5548 mdb_cassert(mc, !mc->mc_dbi || NUMKEYS(mp) > 1); 5549 DPRINTF(("found index 0 to page %"Z"u", NODEPGNO(NODEPTR(mp, 0)))); 5550 5551 if (flags & (MDB_PS_FIRST|MDB_PS_LAST)) { 5552 i = 0; 5553 if (flags & MDB_PS_LAST) { 5554 i = NUMKEYS(mp) - 1; 5555 /* if already init'd, see if we're already in right place */ 5556 if (mc->mc_flags & C_INITIALIZED) { 5557 if (mc->mc_ki[mc->mc_top] == i) { 5558 mc->mc_top = mc->mc_snum++; 5559 mp = mc->mc_pg[mc->mc_top]; 5560 goto ready; 5561 } 5562 } 5563 } 5564 } else { 5565 int exact; 5566 node = mdb_node_search(mc, key, &exact); 5567 if (node == NULL) 5568 i = NUMKEYS(mp) - 1; 5569 else { 5570 i = mc->mc_ki[mc->mc_top]; 5571 if (!exact) { 5572 mdb_cassert(mc, i > 0); 5573 i--; 5574 } 5575 } 5576 DPRINTF(("following index %u for key [%s]", i, DKEY(key))); 5577 } 5578 5579 mdb_cassert(mc, i < NUMKEYS(mp)); 5580 node = NODEPTR(mp, i); 5581 5582 if ((rc = mdb_page_get(mc, NODEPGNO(node), &mp, NULL)) != 0) 5583 return rc; 5584 5585 mc->mc_ki[mc->mc_top] = i; 5586 if ((rc = mdb_cursor_push(mc, mp))) 5587 return rc; 5588 5589 ready: 5590 if (flags & MDB_PS_MODIFY) { 5591 if ((rc = mdb_page_touch(mc)) != 0) 5592 return rc; 5593 mp = mc->mc_pg[mc->mc_top]; 5594 } 5595 } 5596 5597 if (!IS_LEAF(mp)) { 5598 DPRINTF(("internal error, index points to a %02X page!?", 5599 mp->mp_flags)); 5600 mc->mc_txn->mt_flags |= MDB_TXN_ERROR; 5601 return MDB_CORRUPTED; 5602 } 5603 5604 DPRINTF(("found leaf page %"Z"u for key [%s]", mp->mp_pgno, 5605 key ? DKEY(key) : "null")); 5606 mc->mc_flags |= C_INITIALIZED; 5607 mc->mc_flags &= ~C_EOF; 5608 5609 return MDB_SUCCESS; 5610 } 5611 5612 /** Search for the lowest key under the current branch page. 5613 * This just bypasses a NUMKEYS check in the current page 5614 * before calling mdb_page_search_root(), because the callers 5615 * are all in situations where the current page is known to 5616 * be underfilled. 5617 */ 5618 static int 5619 mdb_page_search_lowest(MDB_cursor *mc) 5620 { 5621 MDB_page *mp = mc->mc_pg[mc->mc_top]; 5622 MDB_node *node = NODEPTR(mp, 0); 5623 int rc; 5624 5625 if ((rc = mdb_page_get(mc, NODEPGNO(node), &mp, NULL)) != 0) 5626 return rc; 5627 5628 mc->mc_ki[mc->mc_top] = 0; 5629 if ((rc = mdb_cursor_push(mc, mp))) 5630 return rc; 5631 return mdb_page_search_root(mc, NULL, MDB_PS_FIRST); 5632 } 5633 5634 /** Search for the page a given key should be in. 5635 * Push it and its parent pages on the cursor stack. 5636 * @param[in,out] mc the cursor for this operation. 5637 * @param[in] key the key to search for, or NULL for first/last page. 5638 * @param[in] flags If MDB_PS_MODIFY is set, visited pages in the DB 5639 * are touched (updated with new page numbers). 5640 * If MDB_PS_FIRST or MDB_PS_LAST is set, find first or last leaf. 5641 * This is used by #mdb_cursor_first() and #mdb_cursor_last(). 5642 * If MDB_PS_ROOTONLY set, just fetch root node, no further lookups. 5643 * @return 0 on success, non-zero on failure. 5644 */ 5645 static int 5646 mdb_page_search(MDB_cursor *mc, MDB_val *key, int flags) 5647 { 5648 int rc; 5649 pgno_t root; 5650 5651 /* Make sure the txn is still viable, then find the root from 5652 * the txn's db table and set it as the root of the cursor's stack. 5653 */ 5654 if (mc->mc_txn->mt_flags & MDB_TXN_BLOCKED) { 5655 DPUTS("transaction may not be used now"); 5656 return MDB_BAD_TXN; 5657 } else { 5658 /* Make sure we're using an up-to-date root */ 5659 if (*mc->mc_dbflag & DB_STALE) { 5660 MDB_cursor mc2; 5661 if (TXN_DBI_CHANGED(mc->mc_txn, mc->mc_dbi)) 5662 return MDB_BAD_DBI; 5663 mdb_cursor_init(&mc2, mc->mc_txn, MAIN_DBI, NULL); 5664 rc = mdb_page_search(&mc2, &mc->mc_dbx->md_name, 0); 5665 if (rc) 5666 return rc; 5667 { 5668 MDB_val data; 5669 int exact = 0; 5670 uint16_t flags; 5671 MDB_node *leaf = mdb_node_search(&mc2, 5672 &mc->mc_dbx->md_name, &exact); 5673 if (!exact) 5674 return MDB_NOTFOUND; 5675 if ((leaf->mn_flags & (F_DUPDATA|F_SUBDATA)) != F_SUBDATA) 5676 return MDB_INCOMPATIBLE; /* not a named DB */ 5677 rc = mdb_node_read(&mc2, leaf, &data); 5678 if (rc) 5679 return rc; 5680 memcpy(&flags, ((char *) data.mv_data + offsetof(MDB_db, md_flags)), 5681 sizeof(uint16_t)); 5682 /* The txn may not know this DBI, or another process may 5683 * have dropped and recreated the DB with other flags. 5684 */ 5685 if ((mc->mc_db->md_flags & PERSISTENT_FLAGS) != flags) 5686 return MDB_INCOMPATIBLE; 5687 memcpy(mc->mc_db, data.mv_data, sizeof(MDB_db)); 5688 } 5689 *mc->mc_dbflag &= ~DB_STALE; 5690 } 5691 root = mc->mc_db->md_root; 5692 5693 if (root == P_INVALID) { /* Tree is empty. */ 5694 DPUTS("tree is empty"); 5695 return MDB_NOTFOUND; 5696 } 5697 } 5698 5699 mdb_cassert(mc, root > 1); 5700 if (!mc->mc_pg[0] || mc->mc_pg[0]->mp_pgno != root) 5701 if ((rc = mdb_page_get(mc, root, &mc->mc_pg[0], NULL)) != 0) 5702 return rc; 5703 5704 mc->mc_snum = 1; 5705 mc->mc_top = 0; 5706 5707 DPRINTF(("db %d root page %"Z"u has flags 0x%X", 5708 DDBI(mc), root, mc->mc_pg[0]->mp_flags)); 5709 5710 if (flags & MDB_PS_MODIFY) { 5711 if ((rc = mdb_page_touch(mc))) 5712 return rc; 5713 } 5714 5715 if (flags & MDB_PS_ROOTONLY) 5716 return MDB_SUCCESS; 5717 5718 return mdb_page_search_root(mc, key, flags); 5719 } 5720 5721 static int 5722 mdb_ovpage_free(MDB_cursor *mc, MDB_page *mp) 5723 { 5724 MDB_txn *txn = mc->mc_txn; 5725 pgno_t pg = mp->mp_pgno; 5726 unsigned x = 0, ovpages = mp->mp_pages; 5727 MDB_env *env = txn->mt_env; 5728 MDB_IDL sl = txn->mt_spill_pgs; 5729 MDB_ID pn = pg << 1; 5730 int rc; 5731 5732 DPRINTF(("free ov page %"Z"u (%d)", pg, ovpages)); 5733 /* If the page is dirty or on the spill list we just acquired it, 5734 * so we should give it back to our current free list, if any. 5735 * Otherwise put it onto the list of pages we freed in this txn. 5736 * 5737 * Won't create me_pghead: me_pglast must be inited along with it. 5738 * Unsupported in nested txns: They would need to hide the page 5739 * range in ancestor txns' dirty and spilled lists. 5740 */ 5741 if (env->me_pghead && 5742 !txn->mt_parent && 5743 ((mp->mp_flags & P_DIRTY) || 5744 (sl && (x = mdb_midl_search(sl, pn)) <= sl[0] && sl[x] == pn))) 5745 { 5746 unsigned i, j; 5747 pgno_t *mop; 5748 MDB_ID2 *dl, ix, iy; 5749 rc = mdb_midl_need(&env->me_pghead, ovpages); 5750 if (rc) 5751 return rc; 5752 if (!(mp->mp_flags & P_DIRTY)) { 5753 /* This page is no longer spilled */ 5754 if (x == sl[0]) 5755 sl[0]--; 5756 else 5757 sl[x] |= 1; 5758 goto release; 5759 } 5760 /* Remove from dirty list */ 5761 dl = txn->mt_u.dirty_list; 5762 x = dl[0].mid--; 5763 for (ix = dl[x]; ix.mptr != mp; ix = iy) { 5764 if (x > 1) { 5765 x--; 5766 iy = dl[x]; 5767 dl[x] = ix; 5768 } else { 5769 mdb_cassert(mc, x > 1); 5770 j = ++(dl[0].mid); 5771 dl[j] = ix; /* Unsorted. OK when MDB_TXN_ERROR. */ 5772 txn->mt_flags |= MDB_TXN_ERROR; 5773 return MDB_CORRUPTED; 5774 } 5775 } 5776 txn->mt_dirty_room++; 5777 if (!(env->me_flags & MDB_WRITEMAP)) 5778 mdb_dpage_free(env, mp); 5779 release: 5780 /* Insert in me_pghead */ 5781 mop = env->me_pghead; 5782 j = mop[0] + ovpages; 5783 for (i = mop[0]; i && mop[i] < pg; i--) 5784 mop[j--] = mop[i]; 5785 while (j>i) 5786 mop[j--] = pg++; 5787 mop[0] += ovpages; 5788 } else { 5789 rc = mdb_midl_append_range(&txn->mt_free_pgs, pg, ovpages); 5790 if (rc) 5791 return rc; 5792 } 5793 mc->mc_db->md_overflow_pages -= ovpages; 5794 return 0; 5795 } 5796 5797 /** Return the data associated with a given node. 5798 * @param[in] mc The cursor for this operation. 5799 * @param[in] leaf The node being read. 5800 * @param[out] data Updated to point to the node's data. 5801 * @return 0 on success, non-zero on failure. 5802 */ 5803 static int 5804 mdb_node_read(MDB_cursor *mc, MDB_node *leaf, MDB_val *data) 5805 { 5806 MDB_page *omp; /* overflow page */ 5807 pgno_t pgno; 5808 int rc; 5809 5810 if (!F_ISSET(leaf->mn_flags, F_BIGDATA)) { 5811 data->mv_size = NODEDSZ(leaf); 5812 data->mv_data = NODEDATA(leaf); 5813 return MDB_SUCCESS; 5814 } 5815 5816 /* Read overflow data. 5817 */ 5818 data->mv_size = NODEDSZ(leaf); 5819 memcpy(&pgno, NODEDATA(leaf), sizeof(pgno)); 5820 if ((rc = mdb_page_get(mc, pgno, &omp, NULL)) != 0) { 5821 DPRINTF(("read overflow page %"Z"u failed", pgno)); 5822 return rc; 5823 } 5824 data->mv_data = METADATA(omp); 5825 5826 return MDB_SUCCESS; 5827 } 5828 5829 int 5830 mdb_get(MDB_txn *txn, MDB_dbi dbi, 5831 MDB_val *key, MDB_val *data) 5832 { 5833 MDB_cursor mc; 5834 MDB_xcursor mx; 5835 int exact = 0; 5836 DKBUF; 5837 5838 DPRINTF(("===> get db %u key [%s]", dbi, DKEY(key))); 5839 5840 if (!key || !data || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 5841 return EINVAL; 5842 5843 if (txn->mt_flags & MDB_TXN_BLOCKED) 5844 return MDB_BAD_TXN; 5845 5846 mdb_cursor_init(&mc, txn, dbi, &mx); 5847 return mdb_cursor_set(&mc, key, data, MDB_SET, &exact); 5848 } 5849 5850 /** Find a sibling for a page. 5851 * Replaces the page at the top of the cursor's stack with the 5852 * specified sibling, if one exists. 5853 * @param[in] mc The cursor for this operation. 5854 * @param[in] move_right Non-zero if the right sibling is requested, 5855 * otherwise the left sibling. 5856 * @return 0 on success, non-zero on failure. 5857 */ 5858 static int 5859 mdb_cursor_sibling(MDB_cursor *mc, int move_right) 5860 { 5861 int rc; 5862 MDB_node *indx; 5863 MDB_page *mp; 5864 5865 if (mc->mc_snum < 2) { 5866 return MDB_NOTFOUND; /* root has no siblings */ 5867 } 5868 5869 mdb_cursor_pop(mc); 5870 DPRINTF(("parent page is page %"Z"u, index %u", 5871 mc->mc_pg[mc->mc_top]->mp_pgno, mc->mc_ki[mc->mc_top])); 5872 5873 if (move_right ? (mc->mc_ki[mc->mc_top] + 1u >= NUMKEYS(mc->mc_pg[mc->mc_top])) 5874 : (mc->mc_ki[mc->mc_top] == 0)) { 5875 DPRINTF(("no more keys left, moving to %s sibling", 5876 move_right ? "right" : "left")); 5877 if ((rc = mdb_cursor_sibling(mc, move_right)) != MDB_SUCCESS) { 5878 /* undo cursor_pop before returning */ 5879 mc->mc_top++; 5880 mc->mc_snum++; 5881 return rc; 5882 } 5883 } else { 5884 if (move_right) 5885 mc->mc_ki[mc->mc_top]++; 5886 else 5887 mc->mc_ki[mc->mc_top]--; 5888 DPRINTF(("just moving to %s index key %u", 5889 move_right ? "right" : "left", mc->mc_ki[mc->mc_top])); 5890 } 5891 mdb_cassert(mc, IS_BRANCH(mc->mc_pg[mc->mc_top])); 5892 5893 indx = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]); 5894 if ((rc = mdb_page_get(mc, NODEPGNO(indx), &mp, NULL)) != 0) { 5895 /* mc will be inconsistent if caller does mc_snum++ as above */ 5896 mc->mc_flags &= ~(C_INITIALIZED|C_EOF); 5897 return rc; 5898 } 5899 5900 mdb_cursor_push(mc, mp); 5901 if (!move_right) 5902 mc->mc_ki[mc->mc_top] = NUMKEYS(mp)-1; 5903 5904 return MDB_SUCCESS; 5905 } 5906 5907 /** Move the cursor to the next data item. */ 5908 static int 5909 mdb_cursor_next(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op) 5910 { 5911 MDB_page *mp; 5912 MDB_node *leaf; 5913 int rc; 5914 5915 if ((mc->mc_flags & C_DEL && op == MDB_NEXT_DUP)) 5916 return MDB_NOTFOUND; 5917 5918 if (!(mc->mc_flags & C_INITIALIZED)) 5919 return mdb_cursor_first(mc, key, data); 5920 5921 mp = mc->mc_pg[mc->mc_top]; 5922 5923 if (mc->mc_flags & C_EOF) { 5924 if (mc->mc_ki[mc->mc_top] >= NUMKEYS(mp)-1) 5925 return MDB_NOTFOUND; 5926 mc->mc_flags ^= C_EOF; 5927 } 5928 5929 if (mc->mc_db->md_flags & MDB_DUPSORT) { 5930 leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]); 5931 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 5932 if (op == MDB_NEXT || op == MDB_NEXT_DUP) { 5933 rc = mdb_cursor_next(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_NEXT); 5934 if (op != MDB_NEXT || rc != MDB_NOTFOUND) { 5935 if (rc == MDB_SUCCESS) 5936 MDB_GET_KEY(leaf, key); 5937 return rc; 5938 } 5939 } 5940 } else { 5941 mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF); 5942 if (op == MDB_NEXT_DUP) 5943 return MDB_NOTFOUND; 5944 } 5945 } 5946 5947 DPRINTF(("cursor_next: top page is %"Z"u in cursor %p", 5948 mdb_dbg_pgno(mp), (void *) mc)); 5949 if (mc->mc_flags & C_DEL) { 5950 mc->mc_flags ^= C_DEL; 5951 goto skip; 5952 } 5953 5954 if (mc->mc_ki[mc->mc_top] + 1u >= NUMKEYS(mp)) { 5955 DPUTS("=====> move to next sibling page"); 5956 if ((rc = mdb_cursor_sibling(mc, 1)) != MDB_SUCCESS) { 5957 mc->mc_flags |= C_EOF; 5958 return rc; 5959 } 5960 mp = mc->mc_pg[mc->mc_top]; 5961 DPRINTF(("next page is %"Z"u, key index %u", mp->mp_pgno, mc->mc_ki[mc->mc_top])); 5962 } else 5963 mc->mc_ki[mc->mc_top]++; 5964 5965 skip: 5966 DPRINTF(("==> cursor points to page %"Z"u with %u keys, key index %u", 5967 mdb_dbg_pgno(mp), NUMKEYS(mp), mc->mc_ki[mc->mc_top])); 5968 5969 if (IS_LEAF2(mp)) { 5970 key->mv_size = mc->mc_db->md_pad; 5971 key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size); 5972 return MDB_SUCCESS; 5973 } 5974 5975 mdb_cassert(mc, IS_LEAF(mp)); 5976 leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]); 5977 5978 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 5979 mdb_xcursor_init1(mc, leaf); 5980 rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL); 5981 if (rc != MDB_SUCCESS) 5982 return rc; 5983 } else if (data) { 5984 if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS) 5985 return rc; 5986 } 5987 5988 MDB_GET_KEY(leaf, key); 5989 return MDB_SUCCESS; 5990 } 5991 5992 /** Move the cursor to the previous data item. */ 5993 static int 5994 mdb_cursor_prev(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op) 5995 { 5996 MDB_page *mp; 5997 MDB_node *leaf; 5998 int rc; 5999 6000 if (!(mc->mc_flags & C_INITIALIZED)) { 6001 rc = mdb_cursor_last(mc, key, data); 6002 if (rc) 6003 return rc; 6004 mc->mc_ki[mc->mc_top]++; 6005 } 6006 6007 mp = mc->mc_pg[mc->mc_top]; 6008 6009 if ((mc->mc_db->md_flags & MDB_DUPSORT) && 6010 mc->mc_ki[mc->mc_top] < NUMKEYS(mp)) { 6011 leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]); 6012 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 6013 if (op == MDB_PREV || op == MDB_PREV_DUP) { 6014 rc = mdb_cursor_prev(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_PREV); 6015 if (op != MDB_PREV || rc != MDB_NOTFOUND) { 6016 if (rc == MDB_SUCCESS) { 6017 MDB_GET_KEY(leaf, key); 6018 mc->mc_flags &= ~C_EOF; 6019 } 6020 return rc; 6021 } 6022 } 6023 } else { 6024 mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF); 6025 if (op == MDB_PREV_DUP) 6026 return MDB_NOTFOUND; 6027 } 6028 } 6029 6030 DPRINTF(("cursor_prev: top page is %"Z"u in cursor %p", 6031 mdb_dbg_pgno(mp), (void *) mc)); 6032 6033 mc->mc_flags &= ~(C_EOF|C_DEL); 6034 6035 if (mc->mc_ki[mc->mc_top] == 0) { 6036 DPUTS("=====> move to prev sibling page"); 6037 if ((rc = mdb_cursor_sibling(mc, 0)) != MDB_SUCCESS) { 6038 return rc; 6039 } 6040 mp = mc->mc_pg[mc->mc_top]; 6041 mc->mc_ki[mc->mc_top] = NUMKEYS(mp) - 1; 6042 DPRINTF(("prev page is %"Z"u, key index %u", mp->mp_pgno, mc->mc_ki[mc->mc_top])); 6043 } else 6044 mc->mc_ki[mc->mc_top]--; 6045 6046 DPRINTF(("==> cursor points to page %"Z"u with %u keys, key index %u", 6047 mdb_dbg_pgno(mp), NUMKEYS(mp), mc->mc_ki[mc->mc_top])); 6048 6049 if (!IS_LEAF(mp)) 6050 return MDB_CORRUPTED; 6051 6052 if (IS_LEAF2(mp)) { 6053 key->mv_size = mc->mc_db->md_pad; 6054 key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size); 6055 return MDB_SUCCESS; 6056 } 6057 6058 leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]); 6059 6060 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 6061 mdb_xcursor_init1(mc, leaf); 6062 rc = mdb_cursor_last(&mc->mc_xcursor->mx_cursor, data, NULL); 6063 if (rc != MDB_SUCCESS) 6064 return rc; 6065 } else if (data) { 6066 if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS) 6067 return rc; 6068 } 6069 6070 MDB_GET_KEY(leaf, key); 6071 return MDB_SUCCESS; 6072 } 6073 6074 /** Set the cursor on a specific data item. */ 6075 static int 6076 mdb_cursor_set(MDB_cursor *mc, MDB_val *key, MDB_val *data, 6077 MDB_cursor_op op, int *exactp) 6078 { 6079 int rc; 6080 MDB_page *mp; 6081 MDB_node *leaf = NULL; 6082 DKBUF; 6083 6084 if (key->mv_size == 0) 6085 return MDB_BAD_VALSIZE; 6086 6087 if (mc->mc_xcursor) 6088 mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF); 6089 6090 /* See if we're already on the right page */ 6091 if (mc->mc_flags & C_INITIALIZED) { 6092 MDB_val nodekey; 6093 6094 mp = mc->mc_pg[mc->mc_top]; 6095 if (!NUMKEYS(mp)) { 6096 mc->mc_ki[mc->mc_top] = 0; 6097 return MDB_NOTFOUND; 6098 } 6099 if (MP_FLAGS(mp) & P_LEAF2) { 6100 nodekey.mv_size = mc->mc_db->md_pad; 6101 nodekey.mv_data = LEAF2KEY(mp, 0, nodekey.mv_size); 6102 } else { 6103 leaf = NODEPTR(mp, 0); 6104 MDB_GET_KEY2(leaf, nodekey); 6105 } 6106 rc = mc->mc_dbx->md_cmp(key, &nodekey); 6107 if (rc == 0) { 6108 /* Probably happens rarely, but first node on the page 6109 * was the one we wanted. 6110 */ 6111 mc->mc_ki[mc->mc_top] = 0; 6112 if (exactp) 6113 *exactp = 1; 6114 goto set1; 6115 } 6116 if (rc > 0) { 6117 unsigned int i; 6118 unsigned int nkeys = NUMKEYS(mp); 6119 if (nkeys > 1) { 6120 if (MP_FLAGS(mp) & P_LEAF2) { 6121 nodekey.mv_data = LEAF2KEY(mp, 6122 nkeys-1, nodekey.mv_size); 6123 } else { 6124 leaf = NODEPTR(mp, nkeys-1); 6125 MDB_GET_KEY2(leaf, nodekey); 6126 } 6127 rc = mc->mc_dbx->md_cmp(key, &nodekey); 6128 if (rc == 0) { 6129 /* last node was the one we wanted */ 6130 mc->mc_ki[mc->mc_top] = nkeys-1; 6131 if (exactp) 6132 *exactp = 1; 6133 goto set1; 6134 } 6135 if (rc < 0) { 6136 if (mc->mc_ki[mc->mc_top] < NUMKEYS(mp)) { 6137 /* This is definitely the right page, skip search_page */ 6138 if (MP_FLAGS(mp) & P_LEAF2) { 6139 nodekey.mv_data = LEAF2KEY(mp, 6140 mc->mc_ki[mc->mc_top], nodekey.mv_size); 6141 } else { 6142 leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]); 6143 MDB_GET_KEY2(leaf, nodekey); 6144 } 6145 rc = mc->mc_dbx->md_cmp(key, &nodekey); 6146 if (rc == 0) { 6147 /* current node was the one we wanted */ 6148 if (exactp) 6149 *exactp = 1; 6150 goto set1; 6151 } 6152 } 6153 rc = 0; 6154 mc->mc_flags &= ~C_EOF; 6155 goto set2; 6156 } 6157 } 6158 /* If any parents have right-sibs, search. 6159 * Otherwise, there's nothing further. 6160 */ 6161 for (i=0; i<mc->mc_top; i++) 6162 if (mc->mc_ki[i] < 6163 NUMKEYS(mc->mc_pg[i])-1) 6164 break; 6165 if (i == mc->mc_top) { 6166 /* There are no other pages */ 6167 mc->mc_ki[mc->mc_top] = nkeys; 6168 return MDB_NOTFOUND; 6169 } 6170 } 6171 if (!mc->mc_top) { 6172 /* There are no other pages */ 6173 mc->mc_ki[mc->mc_top] = 0; 6174 if (op == MDB_SET_RANGE && !exactp) { 6175 rc = 0; 6176 goto set1; 6177 } else 6178 return MDB_NOTFOUND; 6179 } 6180 } else { 6181 mc->mc_pg[0] = 0; 6182 } 6183 6184 rc = mdb_page_search(mc, key, 0); 6185 if (rc != MDB_SUCCESS) 6186 return rc; 6187 6188 mp = mc->mc_pg[mc->mc_top]; 6189 mdb_cassert(mc, IS_LEAF(mp)); 6190 6191 set2: 6192 leaf = mdb_node_search(mc, key, exactp); 6193 if (exactp != NULL && !*exactp) { 6194 /* MDB_SET specified and not an exact match. */ 6195 return MDB_NOTFOUND; 6196 } 6197 6198 if (leaf == NULL) { 6199 DPUTS("===> inexact leaf not found, goto sibling"); 6200 if ((rc = mdb_cursor_sibling(mc, 1)) != MDB_SUCCESS) { 6201 mc->mc_flags |= C_EOF; 6202 return rc; /* no entries matched */ 6203 } 6204 mp = mc->mc_pg[mc->mc_top]; 6205 mdb_cassert(mc, IS_LEAF(mp)); 6206 leaf = NODEPTR(mp, 0); 6207 } 6208 6209 set1: 6210 mc->mc_flags |= C_INITIALIZED; 6211 mc->mc_flags &= ~C_EOF; 6212 6213 if (IS_LEAF2(mp)) { 6214 if (op == MDB_SET_RANGE || op == MDB_SET_KEY) { 6215 key->mv_size = mc->mc_db->md_pad; 6216 key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size); 6217 } 6218 return MDB_SUCCESS; 6219 } 6220 6221 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 6222 mdb_xcursor_init1(mc, leaf); 6223 if (op == MDB_SET || op == MDB_SET_KEY || op == MDB_SET_RANGE) { 6224 rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL); 6225 } else { 6226 int ex2, *ex2p; 6227 if (op == MDB_GET_BOTH) { 6228 ex2p = &ex2; 6229 ex2 = 0; 6230 } else { 6231 ex2p = NULL; 6232 } 6233 rc = mdb_cursor_set(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_SET_RANGE, ex2p); 6234 if (rc != MDB_SUCCESS) 6235 return rc; 6236 } 6237 } else if (data) { 6238 if (op == MDB_GET_BOTH || op == MDB_GET_BOTH_RANGE) { 6239 MDB_val olddata; 6240 MDB_cmp_func *dcmp; 6241 if ((rc = mdb_node_read(mc, leaf, &olddata)) != MDB_SUCCESS) 6242 return rc; 6243 dcmp = mc->mc_dbx->md_dcmp; 6244 #if UINT_MAX < SIZE_MAX 6245 if (dcmp == mdb_cmp_int && olddata.mv_size == sizeof(size_t)) 6246 dcmp = mdb_cmp_clong; 6247 #endif 6248 rc = dcmp(data, &olddata); 6249 if (rc) { 6250 if (op == MDB_GET_BOTH || rc > 0) 6251 return MDB_NOTFOUND; 6252 rc = 0; 6253 } 6254 *data = olddata; 6255 6256 } else { 6257 if (mc->mc_xcursor) 6258 mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF); 6259 if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS) 6260 return rc; 6261 } 6262 } 6263 6264 /* The key already matches in all other cases */ 6265 if (op == MDB_SET_RANGE || op == MDB_SET_KEY) 6266 MDB_GET_KEY(leaf, key); 6267 DPRINTF(("==> cursor placed on key [%s]", DKEY(key))); 6268 6269 return rc; 6270 } 6271 6272 /** Move the cursor to the first item in the database. */ 6273 static int 6274 mdb_cursor_first(MDB_cursor *mc, MDB_val *key, MDB_val *data) 6275 { 6276 int rc; 6277 MDB_node *leaf; 6278 6279 if (mc->mc_xcursor) 6280 mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF); 6281 6282 if (!(mc->mc_flags & C_INITIALIZED) || mc->mc_top) { 6283 rc = mdb_page_search(mc, NULL, MDB_PS_FIRST); 6284 if (rc != MDB_SUCCESS) 6285 return rc; 6286 } 6287 mdb_cassert(mc, IS_LEAF(mc->mc_pg[mc->mc_top])); 6288 6289 leaf = NODEPTR(mc->mc_pg[mc->mc_top], 0); 6290 mc->mc_flags |= C_INITIALIZED; 6291 mc->mc_flags &= ~C_EOF; 6292 6293 mc->mc_ki[mc->mc_top] = 0; 6294 6295 if (IS_LEAF2(mc->mc_pg[mc->mc_top])) { 6296 if ( key ) { 6297 key->mv_size = mc->mc_db->md_pad; 6298 key->mv_data = LEAF2KEY(mc->mc_pg[mc->mc_top], 0, key->mv_size); 6299 } 6300 return MDB_SUCCESS; 6301 } 6302 6303 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 6304 mdb_xcursor_init1(mc, leaf); 6305 rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL); 6306 if (rc) 6307 return rc; 6308 } else if (data) { 6309 if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS) 6310 return rc; 6311 } 6312 6313 MDB_GET_KEY(leaf, key); 6314 return MDB_SUCCESS; 6315 } 6316 6317 /** Move the cursor to the last item in the database. */ 6318 static int 6319 mdb_cursor_last(MDB_cursor *mc, MDB_val *key, MDB_val *data) 6320 { 6321 int rc; 6322 MDB_node *leaf; 6323 6324 if (mc->mc_xcursor) 6325 mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF); 6326 6327 if (!(mc->mc_flags & C_INITIALIZED) || mc->mc_top) { 6328 rc = mdb_page_search(mc, NULL, MDB_PS_LAST); 6329 if (rc != MDB_SUCCESS) 6330 return rc; 6331 } 6332 mdb_cassert(mc, IS_LEAF(mc->mc_pg[mc->mc_top])); 6333 6334 mc->mc_ki[mc->mc_top] = NUMKEYS(mc->mc_pg[mc->mc_top]) - 1; 6335 mc->mc_flags |= C_INITIALIZED|C_EOF; 6336 leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]); 6337 6338 if (IS_LEAF2(mc->mc_pg[mc->mc_top])) { 6339 if (key) { 6340 key->mv_size = mc->mc_db->md_pad; 6341 key->mv_data = LEAF2KEY(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], key->mv_size); 6342 } 6343 return MDB_SUCCESS; 6344 } 6345 6346 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 6347 mdb_xcursor_init1(mc, leaf); 6348 rc = mdb_cursor_last(&mc->mc_xcursor->mx_cursor, data, NULL); 6349 if (rc) 6350 return rc; 6351 } else if (data) { 6352 if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS) 6353 return rc; 6354 } 6355 6356 MDB_GET_KEY(leaf, key); 6357 return MDB_SUCCESS; 6358 } 6359 6360 int 6361 mdb_cursor_get(MDB_cursor *mc, MDB_val *key, MDB_val *data, 6362 MDB_cursor_op op) 6363 { 6364 int rc; 6365 int exact = 0; 6366 int (*mfunc)(MDB_cursor *mc, MDB_val *key, MDB_val *data); 6367 6368 if (mc == NULL) 6369 return EINVAL; 6370 6371 if (mc->mc_txn->mt_flags & MDB_TXN_BLOCKED) 6372 return MDB_BAD_TXN; 6373 6374 switch (op) { 6375 case MDB_GET_CURRENT: 6376 if (!(mc->mc_flags & C_INITIALIZED)) { 6377 rc = EINVAL; 6378 } else { 6379 MDB_page *mp = mc->mc_pg[mc->mc_top]; 6380 int nkeys = NUMKEYS(mp); 6381 if (!nkeys || mc->mc_ki[mc->mc_top] >= nkeys) { 6382 mc->mc_ki[mc->mc_top] = nkeys; 6383 rc = MDB_NOTFOUND; 6384 break; 6385 } 6386 rc = MDB_SUCCESS; 6387 if (IS_LEAF2(mp)) { 6388 key->mv_size = mc->mc_db->md_pad; 6389 key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size); 6390 } else { 6391 MDB_node *leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]); 6392 MDB_GET_KEY(leaf, key); 6393 if (data) { 6394 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 6395 rc = mdb_cursor_get(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_GET_CURRENT); 6396 } else { 6397 rc = mdb_node_read(mc, leaf, data); 6398 } 6399 } 6400 } 6401 } 6402 break; 6403 case MDB_GET_BOTH: 6404 case MDB_GET_BOTH_RANGE: 6405 if (data == NULL) { 6406 rc = EINVAL; 6407 break; 6408 } 6409 if (mc->mc_xcursor == NULL) { 6410 rc = MDB_INCOMPATIBLE; 6411 break; 6412 } 6413 /* FALLTHRU */ 6414 case MDB_SET: 6415 case MDB_SET_KEY: 6416 case MDB_SET_RANGE: 6417 if (key == NULL) { 6418 rc = EINVAL; 6419 } else { 6420 rc = mdb_cursor_set(mc, key, data, op, 6421 op == MDB_SET_RANGE ? NULL : &exact); 6422 } 6423 break; 6424 case MDB_GET_MULTIPLE: 6425 if (data == NULL || !(mc->mc_flags & C_INITIALIZED)) { 6426 rc = EINVAL; 6427 break; 6428 } 6429 if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) { 6430 rc = MDB_INCOMPATIBLE; 6431 break; 6432 } 6433 rc = MDB_SUCCESS; 6434 if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) || 6435 (mc->mc_xcursor->mx_cursor.mc_flags & C_EOF)) 6436 break; 6437 goto fetchm; 6438 case MDB_NEXT_MULTIPLE: 6439 if (data == NULL) { 6440 rc = EINVAL; 6441 break; 6442 } 6443 if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) { 6444 rc = MDB_INCOMPATIBLE; 6445 break; 6446 } 6447 rc = mdb_cursor_next(mc, key, data, MDB_NEXT_DUP); 6448 if (rc == MDB_SUCCESS) { 6449 if (mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) { 6450 MDB_cursor *mx; 6451 fetchm: 6452 mx = &mc->mc_xcursor->mx_cursor; 6453 data->mv_size = NUMKEYS(mx->mc_pg[mx->mc_top]) * 6454 mx->mc_db->md_pad; 6455 data->mv_data = METADATA(mx->mc_pg[mx->mc_top]); 6456 mx->mc_ki[mx->mc_top] = NUMKEYS(mx->mc_pg[mx->mc_top])-1; 6457 } else { 6458 rc = MDB_NOTFOUND; 6459 } 6460 } 6461 break; 6462 case MDB_PREV_MULTIPLE: 6463 if (data == NULL) { 6464 rc = EINVAL; 6465 break; 6466 } 6467 if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) { 6468 rc = MDB_INCOMPATIBLE; 6469 break; 6470 } 6471 if (!(mc->mc_flags & C_INITIALIZED)) 6472 rc = mdb_cursor_last(mc, key, data); 6473 else 6474 rc = MDB_SUCCESS; 6475 if (rc == MDB_SUCCESS) { 6476 MDB_cursor *mx = &mc->mc_xcursor->mx_cursor; 6477 if (mx->mc_flags & C_INITIALIZED) { 6478 rc = mdb_cursor_sibling(mx, 0); 6479 if (rc == MDB_SUCCESS) 6480 goto fetchm; 6481 } else { 6482 rc = MDB_NOTFOUND; 6483 } 6484 } 6485 break; 6486 case MDB_NEXT: 6487 case MDB_NEXT_DUP: 6488 case MDB_NEXT_NODUP: 6489 rc = mdb_cursor_next(mc, key, data, op); 6490 break; 6491 case MDB_PREV: 6492 case MDB_PREV_DUP: 6493 case MDB_PREV_NODUP: 6494 rc = mdb_cursor_prev(mc, key, data, op); 6495 break; 6496 case MDB_FIRST: 6497 rc = mdb_cursor_first(mc, key, data); 6498 break; 6499 case MDB_FIRST_DUP: 6500 mfunc = mdb_cursor_first; 6501 mmove: 6502 if (data == NULL || !(mc->mc_flags & C_INITIALIZED)) { 6503 rc = EINVAL; 6504 break; 6505 } 6506 if (mc->mc_xcursor == NULL) { 6507 rc = MDB_INCOMPATIBLE; 6508 break; 6509 } 6510 if (mc->mc_ki[mc->mc_top] >= NUMKEYS(mc->mc_pg[mc->mc_top])) { 6511 mc->mc_ki[mc->mc_top] = NUMKEYS(mc->mc_pg[mc->mc_top]); 6512 rc = MDB_NOTFOUND; 6513 break; 6514 } 6515 mc->mc_flags &= ~C_EOF; 6516 { 6517 MDB_node *leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]); 6518 if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) { 6519 MDB_GET_KEY(leaf, key); 6520 rc = mdb_node_read(mc, leaf, data); 6521 break; 6522 } 6523 } 6524 if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED)) { 6525 rc = EINVAL; 6526 break; 6527 } 6528 rc = mfunc(&mc->mc_xcursor->mx_cursor, data, NULL); 6529 break; 6530 case MDB_LAST: 6531 rc = mdb_cursor_last(mc, key, data); 6532 break; 6533 case MDB_LAST_DUP: 6534 mfunc = mdb_cursor_last; 6535 goto mmove; 6536 default: 6537 DPRINTF(("unhandled/unimplemented cursor operation %u", op)); 6538 rc = EINVAL; 6539 break; 6540 } 6541 6542 if (mc->mc_flags & C_DEL) 6543 mc->mc_flags ^= C_DEL; 6544 6545 return rc; 6546 } 6547 6548 /** Touch all the pages in the cursor stack. Set mc_top. 6549 * Makes sure all the pages are writable, before attempting a write operation. 6550 * @param[in] mc The cursor to operate on. 6551 */ 6552 static int 6553 mdb_cursor_touch(MDB_cursor *mc) 6554 { 6555 int rc = MDB_SUCCESS; 6556 6557 if (mc->mc_dbi >= CORE_DBS && !(*mc->mc_dbflag & (DB_DIRTY|DB_DUPDATA))) { 6558 /* Touch DB record of named DB */ 6559 MDB_cursor mc2; 6560 MDB_xcursor mcx; 6561 if (TXN_DBI_CHANGED(mc->mc_txn, mc->mc_dbi)) 6562 return MDB_BAD_DBI; 6563 mdb_cursor_init(&mc2, mc->mc_txn, MAIN_DBI, &mcx); 6564 rc = mdb_page_search(&mc2, &mc->mc_dbx->md_name, MDB_PS_MODIFY); 6565 if (rc) 6566 return rc; 6567 *mc->mc_dbflag |= DB_DIRTY; 6568 } 6569 mc->mc_top = 0; 6570 if (mc->mc_snum) { 6571 do { 6572 rc = mdb_page_touch(mc); 6573 } while (!rc && ++(mc->mc_top) < mc->mc_snum); 6574 mc->mc_top = mc->mc_snum-1; 6575 } 6576 return rc; 6577 } 6578 6579 /** Do not spill pages to disk if txn is getting full, may fail instead */ 6580 #define MDB_NOSPILL 0x8000 6581 6582 int 6583 mdb_cursor_put(MDB_cursor *mc, MDB_val *key, MDB_val *data, 6584 unsigned int flags) 6585 { 6586 MDB_env *env; 6587 MDB_node *leaf = NULL; 6588 MDB_page *fp, *mp, *sub_root = NULL; 6589 uint16_t fp_flags; 6590 MDB_val xdata, *rdata, dkey, olddata; 6591 MDB_db dummy; 6592 int do_sub = 0, insert_key, insert_data; 6593 unsigned int mcount = 0, dcount = 0, nospill; 6594 size_t nsize; 6595 int rc, rc2; 6596 unsigned int nflags; 6597 DKBUF; 6598 6599 if (mc == NULL || key == NULL) 6600 return EINVAL; 6601 6602 env = mc->mc_txn->mt_env; 6603 6604 /* Check this first so counter will always be zero on any 6605 * early failures. 6606 */ 6607 if (flags & MDB_MULTIPLE) { 6608 dcount = data[1].mv_size; 6609 data[1].mv_size = 0; 6610 if (!F_ISSET(mc->mc_db->md_flags, MDB_DUPFIXED)) 6611 return MDB_INCOMPATIBLE; 6612 } 6613 6614 nospill = flags & MDB_NOSPILL; 6615 flags &= ~MDB_NOSPILL; 6616 6617 if (mc->mc_txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED)) 6618 return (mc->mc_txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN; 6619 6620 if (key->mv_size-1 >= ENV_MAXKEY(env)) 6621 return MDB_BAD_VALSIZE; 6622 6623 #if SIZE_MAX > MAXDATASIZE 6624 if (data->mv_size > ((mc->mc_db->md_flags & MDB_DUPSORT) ? ENV_MAXKEY(env) : MAXDATASIZE)) 6625 return MDB_BAD_VALSIZE; 6626 #else 6627 if ((mc->mc_db->md_flags & MDB_DUPSORT) && data->mv_size > ENV_MAXKEY(env)) 6628 return MDB_BAD_VALSIZE; 6629 #endif 6630 6631 DPRINTF(("==> put db %d key [%s], size %"Z"u, data size %"Z"u", 6632 DDBI(mc), DKEY(key), key ? key->mv_size : 0, data->mv_size)); 6633 6634 dkey.mv_size = 0; 6635 6636 if (flags & MDB_CURRENT) { 6637 if (!(mc->mc_flags & C_INITIALIZED)) 6638 return EINVAL; 6639 rc = MDB_SUCCESS; 6640 } else if (mc->mc_db->md_root == P_INVALID) { 6641 /* new database, cursor has nothing to point to */ 6642 mc->mc_snum = 0; 6643 mc->mc_top = 0; 6644 mc->mc_flags &= ~C_INITIALIZED; 6645 rc = MDB_NO_ROOT; 6646 } else { 6647 int exact = 0; 6648 MDB_val d2; 6649 if (flags & MDB_APPEND) { 6650 MDB_val k2; 6651 rc = mdb_cursor_last(mc, &k2, &d2); 6652 if (rc == 0) { 6653 rc = mc->mc_dbx->md_cmp(key, &k2); 6654 if (rc > 0) { 6655 rc = MDB_NOTFOUND; 6656 mc->mc_ki[mc->mc_top]++; 6657 } else { 6658 /* new key is <= last key */ 6659 rc = MDB_KEYEXIST; 6660 } 6661 } 6662 } else { 6663 rc = mdb_cursor_set(mc, key, &d2, MDB_SET, &exact); 6664 } 6665 if ((flags & MDB_NOOVERWRITE) && rc == 0) { 6666 DPRINTF(("duplicate key [%s]", DKEY(key))); 6667 *data = d2; 6668 return MDB_KEYEXIST; 6669 } 6670 if (rc && rc != MDB_NOTFOUND) 6671 return rc; 6672 } 6673 6674 if (mc->mc_flags & C_DEL) 6675 mc->mc_flags ^= C_DEL; 6676 6677 /* Cursor is positioned, check for room in the dirty list */ 6678 if (!nospill) { 6679 if (flags & MDB_MULTIPLE) { 6680 rdata = &xdata; 6681 xdata.mv_size = data->mv_size * dcount; 6682 } else { 6683 rdata = data; 6684 } 6685 if ((rc2 = mdb_page_spill(mc, key, rdata))) 6686 return rc2; 6687 } 6688 6689 if (rc == MDB_NO_ROOT) { 6690 MDB_page *np; 6691 /* new database, write a root leaf page */ 6692 DPUTS("allocating new root leaf page"); 6693 if ((rc2 = mdb_page_new(mc, P_LEAF, 1, &np))) { 6694 return rc2; 6695 } 6696 mdb_cursor_push(mc, np); 6697 mc->mc_db->md_root = np->mp_pgno; 6698 mc->mc_db->md_depth++; 6699 *mc->mc_dbflag |= DB_DIRTY; 6700 if ((mc->mc_db->md_flags & (MDB_DUPSORT|MDB_DUPFIXED)) 6701 == MDB_DUPFIXED) 6702 MP_FLAGS(np) |= P_LEAF2; 6703 mc->mc_flags |= C_INITIALIZED; 6704 } else { 6705 /* make sure all cursor pages are writable */ 6706 rc2 = mdb_cursor_touch(mc); 6707 if (rc2) 6708 return rc2; 6709 } 6710 6711 insert_key = insert_data = rc; 6712 if (insert_key) { 6713 /* The key does not exist */ 6714 DPRINTF(("inserting key at index %i", mc->mc_ki[mc->mc_top])); 6715 if ((mc->mc_db->md_flags & MDB_DUPSORT) && 6716 LEAFSIZE(key, data) > env->me_nodemax) 6717 { 6718 /* Too big for a node, insert in sub-DB. Set up an empty 6719 * "old sub-page" for prep_subDB to expand to a full page. 6720 */ 6721 fp_flags = P_LEAF|P_DIRTY; 6722 fp = env->me_pbuf; 6723 fp->mp_pad = data->mv_size; /* used if MDB_DUPFIXED */ 6724 MP_LOWER(fp) = MP_UPPER(fp) = (PAGEHDRSZ-PAGEBASE); 6725 olddata.mv_size = PAGEHDRSZ; 6726 goto prep_subDB; 6727 } 6728 } else { 6729 /* there's only a key anyway, so this is a no-op */ 6730 if (IS_LEAF2(mc->mc_pg[mc->mc_top])) { 6731 char *ptr; 6732 unsigned int ksize = mc->mc_db->md_pad; 6733 if (key->mv_size != ksize) 6734 return MDB_BAD_VALSIZE; 6735 ptr = LEAF2KEY(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], ksize); 6736 memcpy(ptr, key->mv_data, ksize); 6737 fix_parent: 6738 /* if overwriting slot 0 of leaf, need to 6739 * update branch key if there is a parent page 6740 */ 6741 if (mc->mc_top && !mc->mc_ki[mc->mc_top]) { 6742 unsigned short dtop = 1; 6743 mc->mc_top--; 6744 /* slot 0 is always an empty key, find real slot */ 6745 while (mc->mc_top && !mc->mc_ki[mc->mc_top]) { 6746 mc->mc_top--; 6747 dtop++; 6748 } 6749 if (mc->mc_ki[mc->mc_top]) 6750 rc2 = mdb_update_key(mc, key); 6751 else 6752 rc2 = MDB_SUCCESS; 6753 mc->mc_top += dtop; 6754 if (rc2) 6755 return rc2; 6756 } 6757 return MDB_SUCCESS; 6758 } 6759 6760 more: 6761 leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]); 6762 olddata.mv_size = NODEDSZ(leaf); 6763 olddata.mv_data = NODEDATA(leaf); 6764 6765 /* DB has dups? */ 6766 if (F_ISSET(mc->mc_db->md_flags, MDB_DUPSORT)) { 6767 /* Prepare (sub-)page/sub-DB to accept the new item, 6768 * if needed. fp: old sub-page or a header faking 6769 * it. mp: new (sub-)page. offset: growth in page 6770 * size. xdata: node data with new page or DB. 6771 */ 6772 unsigned i, offset = 0; 6773 mp = fp = xdata.mv_data = env->me_pbuf; 6774 mp->mp_pgno = mc->mc_pg[mc->mc_top]->mp_pgno; 6775 6776 /* Was a single item before, must convert now */ 6777 if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) { 6778 MDB_cmp_func *dcmp; 6779 /* Just overwrite the current item */ 6780 if (flags == MDB_CURRENT) 6781 goto current; 6782 dcmp = mc->mc_dbx->md_dcmp; 6783 #if UINT_MAX < SIZE_MAX 6784 if (dcmp == mdb_cmp_int && olddata.mv_size == sizeof(size_t)) 6785 dcmp = mdb_cmp_clong; 6786 #endif 6787 /* does data match? */ 6788 if (!dcmp(data, &olddata)) { 6789 if (flags & (MDB_NODUPDATA|MDB_APPENDDUP)) 6790 return MDB_KEYEXIST; 6791 /* overwrite it */ 6792 goto current; 6793 } 6794 6795 /* Back up original data item */ 6796 dkey.mv_size = olddata.mv_size; 6797 dkey.mv_data = memcpy(fp+1, olddata.mv_data, olddata.mv_size); 6798 6799 /* Make sub-page header for the dup items, with dummy body */ 6800 MP_FLAGS(fp) = P_LEAF|P_DIRTY|P_SUBP; 6801 MP_LOWER(fp) = (PAGEHDRSZ-PAGEBASE); 6802 xdata.mv_size = PAGEHDRSZ + dkey.mv_size + data->mv_size; 6803 if (mc->mc_db->md_flags & MDB_DUPFIXED) { 6804 MP_FLAGS(fp) |= P_LEAF2; 6805 fp->mp_pad = data->mv_size; 6806 xdata.mv_size += 2 * data->mv_size; /* leave space for 2 more */ 6807 } else { 6808 xdata.mv_size += 2 * (sizeof(indx_t) + NODESIZE) + 6809 (dkey.mv_size & 1) + (data->mv_size & 1); 6810 } 6811 MP_UPPER(fp) = xdata.mv_size - PAGEBASE; 6812 olddata.mv_size = xdata.mv_size; /* pretend olddata is fp */ 6813 } else if (leaf->mn_flags & F_SUBDATA) { 6814 /* Data is on sub-DB, just store it */ 6815 flags |= F_DUPDATA|F_SUBDATA; 6816 goto put_sub; 6817 } else { 6818 /* Data is on sub-page */ 6819 fp = olddata.mv_data; 6820 switch (flags) { 6821 default: 6822 if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) { 6823 offset = EVEN(NODESIZE + sizeof(indx_t) + 6824 data->mv_size); 6825 break; 6826 } 6827 offset = fp->mp_pad; 6828 if (SIZELEFT(fp) < offset) { 6829 offset *= 4; /* space for 4 more */ 6830 break; 6831 } 6832 /* FALLTHRU */ /* Big enough MDB_DUPFIXED sub-page */ 6833 case MDB_CURRENT: 6834 MP_FLAGS(fp) |= P_DIRTY; 6835 COPY_PGNO(MP_PGNO(fp), MP_PGNO(mp)); 6836 mc->mc_xcursor->mx_cursor.mc_pg[0] = fp; 6837 flags |= F_DUPDATA; 6838 goto put_sub; 6839 } 6840 xdata.mv_size = olddata.mv_size + offset; 6841 } 6842 6843 fp_flags = MP_FLAGS(fp); 6844 if (NODESIZE + NODEKSZ(leaf) + xdata.mv_size > env->me_nodemax) { 6845 /* Too big for a sub-page, convert to sub-DB */ 6846 fp_flags &= ~P_SUBP; 6847 prep_subDB: 6848 if (mc->mc_db->md_flags & MDB_DUPFIXED) { 6849 fp_flags |= P_LEAF2; 6850 dummy.md_pad = fp->mp_pad; 6851 dummy.md_flags = MDB_DUPFIXED; 6852 if (mc->mc_db->md_flags & MDB_INTEGERDUP) 6853 dummy.md_flags |= MDB_INTEGERKEY; 6854 } else { 6855 dummy.md_pad = 0; 6856 dummy.md_flags = 0; 6857 } 6858 dummy.md_depth = 1; 6859 dummy.md_branch_pages = 0; 6860 dummy.md_leaf_pages = 1; 6861 dummy.md_overflow_pages = 0; 6862 dummy.md_entries = NUMKEYS(fp); 6863 xdata.mv_size = sizeof(MDB_db); 6864 xdata.mv_data = &dummy; 6865 if ((rc = mdb_page_alloc(mc, 1, &mp))) 6866 return rc; 6867 offset = env->me_psize - olddata.mv_size; 6868 flags |= F_DUPDATA|F_SUBDATA; 6869 dummy.md_root = mp->mp_pgno; 6870 sub_root = mp; 6871 } 6872 if (mp != fp) { 6873 MP_FLAGS(mp) = fp_flags | P_DIRTY; 6874 MP_PAD(mp) = MP_PAD(fp); 6875 MP_LOWER(mp) = MP_LOWER(fp); 6876 MP_UPPER(mp) = MP_UPPER(fp) + offset; 6877 if (fp_flags & P_LEAF2) { 6878 memcpy(METADATA(mp), METADATA(fp), NUMKEYS(fp) * fp->mp_pad); 6879 } else { 6880 memcpy((char *)mp + MP_UPPER(mp) + PAGEBASE, (char *)fp + MP_UPPER(fp) + PAGEBASE, 6881 olddata.mv_size - MP_UPPER(fp) - PAGEBASE); 6882 memcpy((char *)MP_PTRS(mp), (char *)MP_PTRS(fp), NUMKEYS(fp) * sizeof(mp->mp_ptrs[0])); 6883 for (i=0; i<NUMKEYS(fp); i++) 6884 mp->mp_ptrs[i] += offset; 6885 } 6886 } 6887 6888 rdata = &xdata; 6889 flags |= F_DUPDATA; 6890 do_sub = 1; 6891 if (!insert_key) 6892 mdb_node_del(mc, 0); 6893 goto new_sub; 6894 } 6895 current: 6896 /* LMDB passes F_SUBDATA in 'flags' to write a DB record */ 6897 if ((leaf->mn_flags ^ flags) & F_SUBDATA) 6898 return MDB_INCOMPATIBLE; 6899 /* overflow page overwrites need special handling */ 6900 if (F_ISSET(leaf->mn_flags, F_BIGDATA)) { 6901 MDB_page *omp; 6902 pgno_t pg; 6903 int level, ovpages, dpages = OVPAGES(data->mv_size, env->me_psize); 6904 6905 memcpy(&pg, olddata.mv_data, sizeof(pg)); 6906 if ((rc2 = mdb_page_get(mc, pg, &omp, &level)) != 0) 6907 return rc2; 6908 ovpages = omp->mp_pages; 6909 6910 /* Is the ov page large enough? */ 6911 if (ovpages >= dpages) { 6912 if (!(omp->mp_flags & P_DIRTY) && 6913 (level || (env->me_flags & MDB_WRITEMAP))) 6914 { 6915 rc = mdb_page_unspill(mc->mc_txn, omp, &omp); 6916 if (rc) 6917 return rc; 6918 level = 0; /* dirty in this txn or clean */ 6919 } 6920 /* Is it dirty? */ 6921 if (omp->mp_flags & P_DIRTY) { 6922 /* yes, overwrite it. Note in this case we don't 6923 * bother to try shrinking the page if the new data 6924 * is smaller than the overflow threshold. 6925 */ 6926 if (level > 1) { 6927 /* It is writable only in a parent txn */ 6928 size_t sz = (size_t) env->me_psize * ovpages, off; 6929 MDB_page *np = mdb_page_malloc(mc->mc_txn, ovpages); 6930 MDB_ID2 id2; 6931 if (!np) 6932 return ENOMEM; 6933 id2.mid = pg; 6934 id2.mptr = np; 6935 /* Note - this page is already counted in parent's dirty_room */ 6936 rc2 = mdb_mid2l_insert(mc->mc_txn->mt_u.dirty_list, &id2); 6937 mdb_cassert(mc, rc2 == 0); 6938 /* Currently we make the page look as with put() in the 6939 * parent txn, in case the user peeks at MDB_RESERVEd 6940 * or unused parts. Some users treat ovpages specially. 6941 */ 6942 if (!(flags & MDB_RESERVE)) { 6943 /* Skip the part where LMDB will put *data. 6944 * Copy end of page, adjusting alignment so 6945 * compiler may copy words instead of bytes. 6946 */ 6947 off = (PAGEHDRSZ + data->mv_size) & -(int)sizeof(size_t); 6948 memcpy((size_t *)((char *)np + off), 6949 (size_t *)((char *)omp + off), sz - off); 6950 sz = PAGEHDRSZ; 6951 } 6952 memcpy(np, omp, sz); /* Copy beginning of page */ 6953 omp = np; 6954 } 6955 SETDSZ(leaf, data->mv_size); 6956 if (F_ISSET(flags, MDB_RESERVE)) 6957 data->mv_data = METADATA(omp); 6958 else 6959 memcpy(METADATA(omp), data->mv_data, data->mv_size); 6960 return MDB_SUCCESS; 6961 } 6962 } 6963 if ((rc2 = mdb_ovpage_free(mc, omp)) != MDB_SUCCESS) 6964 return rc2; 6965 } else if (data->mv_size == olddata.mv_size) { 6966 /* same size, just replace it. Note that we could 6967 * also reuse this node if the new data is smaller, 6968 * but instead we opt to shrink the node in that case. 6969 */ 6970 if (F_ISSET(flags, MDB_RESERVE)) 6971 data->mv_data = olddata.mv_data; 6972 else if (!(mc->mc_flags & C_SUB)) 6973 memcpy(olddata.mv_data, data->mv_data, data->mv_size); 6974 else { 6975 if (key->mv_size != NODEKSZ(leaf)) 6976 goto new_ksize; 6977 memcpy(NODEKEY(leaf), key->mv_data, key->mv_size); 6978 goto fix_parent; 6979 } 6980 return MDB_SUCCESS; 6981 } 6982 new_ksize: 6983 mdb_node_del(mc, 0); 6984 } 6985 6986 rdata = data; 6987 6988 new_sub: 6989 nflags = flags & NODE_ADD_FLAGS; 6990 nsize = IS_LEAF2(mc->mc_pg[mc->mc_top]) ? key->mv_size : mdb_leaf_size(env, key, rdata); 6991 if (SIZELEFT(mc->mc_pg[mc->mc_top]) < nsize) { 6992 if (( flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA ) 6993 nflags &= ~MDB_APPEND; /* sub-page may need room to grow */ 6994 if (!insert_key) 6995 nflags |= MDB_SPLIT_REPLACE; 6996 rc = mdb_page_split(mc, key, rdata, P_INVALID, nflags); 6997 } else { 6998 /* There is room already in this leaf page. */ 6999 rc = mdb_node_add(mc, mc->mc_ki[mc->mc_top], key, rdata, 0, nflags); 7000 if (rc == 0) { 7001 /* Adjust other cursors pointing to mp */ 7002 MDB_cursor *m2, *m3; 7003 MDB_dbi dbi = mc->mc_dbi; 7004 unsigned i = mc->mc_top; 7005 MDB_page *mp = mc->mc_pg[i]; 7006 7007 for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) { 7008 if (mc->mc_flags & C_SUB) 7009 m3 = &m2->mc_xcursor->mx_cursor; 7010 else 7011 m3 = m2; 7012 if (m3 == mc || m3->mc_snum < mc->mc_snum || m3->mc_pg[i] != mp) continue; 7013 if (m3->mc_ki[i] >= mc->mc_ki[i] && insert_key) { 7014 m3->mc_ki[i]++; 7015 } 7016 XCURSOR_REFRESH(m3, i, mp); 7017 } 7018 } 7019 } 7020 7021 if (rc == MDB_SUCCESS) { 7022 /* Now store the actual data in the child DB. Note that we're 7023 * storing the user data in the keys field, so there are strict 7024 * size limits on dupdata. The actual data fields of the child 7025 * DB are all zero size. 7026 */ 7027 if (do_sub) { 7028 int xflags, new_dupdata; 7029 size_t ecount; 7030 put_sub: 7031 xdata.mv_size = 0; 7032 xdata.mv_data = ""; 7033 leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]); 7034 if ((flags & (MDB_CURRENT|MDB_APPENDDUP)) == MDB_CURRENT) { 7035 xflags = MDB_CURRENT|MDB_NOSPILL; 7036 } else { 7037 mdb_xcursor_init1(mc, leaf); 7038 xflags = (flags & MDB_NODUPDATA) ? 7039 MDB_NOOVERWRITE|MDB_NOSPILL : MDB_NOSPILL; 7040 } 7041 if (sub_root) 7042 mc->mc_xcursor->mx_cursor.mc_pg[0] = sub_root; 7043 new_dupdata = (int)dkey.mv_size; 7044 /* converted, write the original data first */ 7045 if (dkey.mv_size) { 7046 rc = mdb_cursor_put(&mc->mc_xcursor->mx_cursor, &dkey, &xdata, xflags); 7047 if (rc) 7048 goto bad_sub; 7049 /* we've done our job */ 7050 dkey.mv_size = 0; 7051 } 7052 if (!(leaf->mn_flags & F_SUBDATA) || sub_root) { 7053 /* Adjust other cursors pointing to mp */ 7054 MDB_cursor *m2; 7055 MDB_xcursor *mx = mc->mc_xcursor; 7056 unsigned i = mc->mc_top; 7057 MDB_page *mp = mc->mc_pg[i]; 7058 7059 for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) { 7060 if (m2 == mc || m2->mc_snum < mc->mc_snum) continue; 7061 if (!(m2->mc_flags & C_INITIALIZED)) continue; 7062 if (m2->mc_pg[i] == mp) { 7063 if (m2->mc_ki[i] == mc->mc_ki[i]) { 7064 mdb_xcursor_init2(m2, mx, new_dupdata); 7065 } else if (!insert_key) { 7066 XCURSOR_REFRESH(m2, i, mp); 7067 } 7068 } 7069 } 7070 } 7071 ecount = mc->mc_xcursor->mx_db.md_entries; 7072 if (flags & MDB_APPENDDUP) 7073 xflags |= MDB_APPEND; 7074 rc = mdb_cursor_put(&mc->mc_xcursor->mx_cursor, data, &xdata, xflags); 7075 if (flags & F_SUBDATA) { 7076 void *db = NODEDATA(leaf); 7077 memcpy(db, &mc->mc_xcursor->mx_db, sizeof(MDB_db)); 7078 } 7079 insert_data = mc->mc_xcursor->mx_db.md_entries - ecount; 7080 } 7081 /* Increment count unless we just replaced an existing item. */ 7082 if (insert_data) 7083 mc->mc_db->md_entries++; 7084 if (insert_key) { 7085 /* Invalidate txn if we created an empty sub-DB */ 7086 if (rc) 7087 goto bad_sub; 7088 /* If we succeeded and the key didn't exist before, 7089 * make sure the cursor is marked valid. 7090 */ 7091 mc->mc_flags |= C_INITIALIZED; 7092 } 7093 if (flags & MDB_MULTIPLE) { 7094 if (!rc) { 7095 mcount++; 7096 /* let caller know how many succeeded, if any */ 7097 data[1].mv_size = mcount; 7098 if (mcount < dcount) { 7099 data[0].mv_data = (char *)data[0].mv_data + data[0].mv_size; 7100 insert_key = insert_data = 0; 7101 goto more; 7102 } 7103 } 7104 } 7105 return rc; 7106 bad_sub: 7107 if (rc == MDB_KEYEXIST) /* should not happen, we deleted that item */ 7108 rc = MDB_CORRUPTED; 7109 } 7110 mc->mc_txn->mt_flags |= MDB_TXN_ERROR; 7111 return rc; 7112 } 7113 7114 int 7115 mdb_cursor_del(MDB_cursor *mc, unsigned int flags) 7116 { 7117 MDB_node *leaf; 7118 MDB_page *mp; 7119 int rc; 7120 7121 if (mc->mc_txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED)) 7122 return (mc->mc_txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN; 7123 7124 if (!(mc->mc_flags & C_INITIALIZED)) 7125 return EINVAL; 7126 7127 if (mc->mc_ki[mc->mc_top] >= NUMKEYS(mc->mc_pg[mc->mc_top])) 7128 return MDB_NOTFOUND; 7129 7130 if (!(flags & MDB_NOSPILL) && (rc = mdb_page_spill(mc, NULL, NULL))) 7131 return rc; 7132 7133 rc = mdb_cursor_touch(mc); 7134 if (rc) 7135 return rc; 7136 7137 mp = mc->mc_pg[mc->mc_top]; 7138 if (!IS_LEAF(mp)) 7139 return MDB_CORRUPTED; 7140 if (IS_LEAF2(mp)) 7141 goto del_key; 7142 leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]); 7143 7144 if (F_ISSET(leaf->mn_flags, F_DUPDATA)) { 7145 if (flags & MDB_NODUPDATA) { 7146 /* mdb_cursor_del0() will subtract the final entry */ 7147 mc->mc_db->md_entries -= mc->mc_xcursor->mx_db.md_entries - 1; 7148 mc->mc_xcursor->mx_cursor.mc_flags &= ~C_INITIALIZED; 7149 } else { 7150 if (!F_ISSET(leaf->mn_flags, F_SUBDATA)) { 7151 mc->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf); 7152 } 7153 rc = mdb_cursor_del(&mc->mc_xcursor->mx_cursor, MDB_NOSPILL); 7154 if (rc) 7155 return rc; 7156 /* If sub-DB still has entries, we're done */ 7157 if (mc->mc_xcursor->mx_db.md_entries) { 7158 if (leaf->mn_flags & F_SUBDATA) { 7159 /* update subDB info */ 7160 void *db = NODEDATA(leaf); 7161 memcpy(db, &mc->mc_xcursor->mx_db, sizeof(MDB_db)); 7162 } else { 7163 MDB_cursor *m2; 7164 /* shrink fake page */ 7165 mdb_node_shrink(mp, mc->mc_ki[mc->mc_top]); 7166 leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]); 7167 mc->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf); 7168 /* fix other sub-DB cursors pointed at fake pages on this page */ 7169 for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) { 7170 if (m2 == mc || m2->mc_snum < mc->mc_snum) continue; 7171 if (!(m2->mc_flags & C_INITIALIZED)) continue; 7172 if (m2->mc_pg[mc->mc_top] == mp) { 7173 XCURSOR_REFRESH(m2, mc->mc_top, mp); 7174 } 7175 } 7176 } 7177 mc->mc_db->md_entries--; 7178 return rc; 7179 } else { 7180 mc->mc_xcursor->mx_cursor.mc_flags &= ~C_INITIALIZED; 7181 } 7182 /* otherwise fall thru and delete the sub-DB */ 7183 } 7184 7185 if (leaf->mn_flags & F_SUBDATA) { 7186 /* add all the child DB's pages to the free list */ 7187 rc = mdb_drop0(&mc->mc_xcursor->mx_cursor, 0); 7188 if (rc) 7189 goto fail; 7190 } 7191 } 7192 /* LMDB passes F_SUBDATA in 'flags' to delete a DB record */ 7193 else if ((leaf->mn_flags ^ flags) & F_SUBDATA) { 7194 rc = MDB_INCOMPATIBLE; 7195 goto fail; 7196 } 7197 7198 /* add overflow pages to free list */ 7199 if (F_ISSET(leaf->mn_flags, F_BIGDATA)) { 7200 MDB_page *omp; 7201 pgno_t pg; 7202 7203 memcpy(&pg, NODEDATA(leaf), sizeof(pg)); 7204 if ((rc = mdb_page_get(mc, pg, &omp, NULL)) || 7205 (rc = mdb_ovpage_free(mc, omp))) 7206 goto fail; 7207 } 7208 7209 del_key: 7210 return mdb_cursor_del0(mc); 7211 7212 fail: 7213 mc->mc_txn->mt_flags |= MDB_TXN_ERROR; 7214 return rc; 7215 } 7216 7217 /** Allocate and initialize new pages for a database. 7218 * Set #MDB_TXN_ERROR on failure. 7219 * @param[in] mc a cursor on the database being added to. 7220 * @param[in] flags flags defining what type of page is being allocated. 7221 * @param[in] num the number of pages to allocate. This is usually 1, 7222 * unless allocating overflow pages for a large record. 7223 * @param[out] mp Address of a page, or NULL on failure. 7224 * @return 0 on success, non-zero on failure. 7225 */ 7226 static int 7227 mdb_page_new(MDB_cursor *mc, uint32_t flags, int num, MDB_page **mp) 7228 { 7229 MDB_page *np; 7230 int rc; 7231 7232 if ((rc = mdb_page_alloc(mc, num, &np))) 7233 return rc; 7234 DPRINTF(("allocated new mpage %"Z"u, page size %u", 7235 np->mp_pgno, mc->mc_txn->mt_env->me_psize)); 7236 np->mp_flags = flags | P_DIRTY; 7237 np->mp_lower = (PAGEHDRSZ-PAGEBASE); 7238 np->mp_upper = mc->mc_txn->mt_env->me_psize - PAGEBASE; 7239 7240 if (IS_BRANCH(np)) 7241 mc->mc_db->md_branch_pages++; 7242 else if (IS_LEAF(np)) 7243 mc->mc_db->md_leaf_pages++; 7244 else if (IS_OVERFLOW(np)) { 7245 mc->mc_db->md_overflow_pages += num; 7246 np->mp_pages = num; 7247 } 7248 *mp = np; 7249 7250 return 0; 7251 } 7252 7253 /** Calculate the size of a leaf node. 7254 * The size depends on the environment's page size; if a data item 7255 * is too large it will be put onto an overflow page and the node 7256 * size will only include the key and not the data. Sizes are always 7257 * rounded up to an even number of bytes, to guarantee 2-byte alignment 7258 * of the #MDB_node headers. 7259 * @param[in] env The environment handle. 7260 * @param[in] key The key for the node. 7261 * @param[in] data The data for the node. 7262 * @return The number of bytes needed to store the node. 7263 */ 7264 static size_t 7265 mdb_leaf_size(MDB_env *env, MDB_val *key, MDB_val *data) 7266 { 7267 size_t sz; 7268 7269 sz = LEAFSIZE(key, data); 7270 if (sz > env->me_nodemax) { 7271 /* put on overflow page */ 7272 sz -= data->mv_size - sizeof(pgno_t); 7273 } 7274 7275 return EVEN(sz + sizeof(indx_t)); 7276 } 7277 7278 /** Calculate the size of a branch node. 7279 * The size should depend on the environment's page size but since 7280 * we currently don't support spilling large keys onto overflow 7281 * pages, it's simply the size of the #MDB_node header plus the 7282 * size of the key. Sizes are always rounded up to an even number 7283 * of bytes, to guarantee 2-byte alignment of the #MDB_node headers. 7284 * @param[in] env The environment handle. 7285 * @param[in] key The key for the node. 7286 * @return The number of bytes needed to store the node. 7287 */ 7288 static size_t 7289 mdb_branch_size(MDB_env *env, MDB_val *key) 7290 { 7291 size_t sz; 7292 7293 sz = INDXSIZE(key); 7294 if (sz > env->me_nodemax) { 7295 /* put on overflow page */ 7296 /* not implemented */ 7297 /* sz -= key->size - sizeof(pgno_t); */ 7298 } 7299 7300 return sz + sizeof(indx_t); 7301 } 7302 7303 /** Add a node to the page pointed to by the cursor. 7304 * Set #MDB_TXN_ERROR on failure. 7305 * @param[in] mc The cursor for this operation. 7306 * @param[in] indx The index on the page where the new node should be added. 7307 * @param[in] key The key for the new node. 7308 * @param[in] data The data for the new node, if any. 7309 * @param[in] pgno The page number, if adding a branch node. 7310 * @param[in] flags Flags for the node. 7311 * @return 0 on success, non-zero on failure. Possible errors are: 7312 * <ul> 7313 * <li>ENOMEM - failed to allocate overflow pages for the node. 7314 * <li>MDB_PAGE_FULL - there is insufficient room in the page. This error 7315 * should never happen since all callers already calculate the 7316 * page's free space before calling this function. 7317 * </ul> 7318 */ 7319 static int 7320 mdb_node_add(MDB_cursor *mc, indx_t indx, 7321 MDB_val *key, MDB_val *data, pgno_t pgno, unsigned int flags) 7322 { 7323 unsigned int i; 7324 size_t node_size = NODESIZE; 7325 ssize_t room; 7326 indx_t ofs; 7327 MDB_node *node; 7328 MDB_page *mp = mc->mc_pg[mc->mc_top]; 7329 MDB_page *ofp = NULL; /* overflow page */ 7330 void *ndata; 7331 DKBUF; 7332 7333 mdb_cassert(mc, MP_UPPER(mp) >= MP_LOWER(mp)); 7334 7335 DPRINTF(("add to %s %spage %"Z"u index %i, data size %"Z"u key size %"Z"u [%s]", 7336 IS_LEAF(mp) ? "leaf" : "branch", 7337 IS_SUBP(mp) ? "sub-" : "", 7338 mdb_dbg_pgno(mp), indx, data ? data->mv_size : 0, 7339 key ? key->mv_size : 0, key ? DKEY(key) : "null")); 7340 7341 if (IS_LEAF2(mp)) { 7342 /* Move higher keys up one slot. */ 7343 int ksize = mc->mc_db->md_pad, dif; 7344 char *ptr = LEAF2KEY(mp, indx, ksize); 7345 dif = NUMKEYS(mp) - indx; 7346 if (dif > 0) 7347 memmove(ptr+ksize, ptr, dif*ksize); 7348 /* insert new key */ 7349 memcpy(ptr, key->mv_data, ksize); 7350 7351 /* Just using these for counting */ 7352 MP_LOWER(mp) += sizeof(indx_t); 7353 MP_UPPER(mp) -= ksize - sizeof(indx_t); 7354 return MDB_SUCCESS; 7355 } 7356 7357 room = (ssize_t)SIZELEFT(mp) - (ssize_t)sizeof(indx_t); 7358 if (key != NULL) 7359 node_size += key->mv_size; 7360 if (IS_LEAF(mp)) { 7361 mdb_cassert(mc, key && data); 7362 if (F_ISSET(flags, F_BIGDATA)) { 7363 /* Data already on overflow page. */ 7364 node_size += sizeof(pgno_t); 7365 } else if (node_size + data->mv_size > mc->mc_txn->mt_env->me_nodemax) { 7366 int ovpages = OVPAGES(data->mv_size, mc->mc_txn->mt_env->me_psize); 7367 int rc; 7368 /* Put data on overflow page. */ 7369 DPRINTF(("data size is %"Z"u, node would be %"Z"u, put data on overflow page", 7370 data->mv_size, node_size+data->mv_size)); 7371 node_size = EVEN(node_size + sizeof(pgno_t)); 7372 if ((ssize_t)node_size > room) 7373 goto full; 7374 if ((rc = mdb_page_new(mc, P_OVERFLOW, ovpages, &ofp))) 7375 return rc; 7376 DPRINTF(("allocated overflow page %"Z"u", ofp->mp_pgno)); 7377 flags |= F_BIGDATA; 7378 goto update; 7379 } else { 7380 node_size += data->mv_size; 7381 } 7382 } 7383 node_size = EVEN(node_size); 7384 if ((ssize_t)node_size > room) 7385 goto full; 7386 7387 update: 7388 /* Move higher pointers up one slot. */ 7389 for (i = NUMKEYS(mp); i > indx; i--) 7390 MP_PTRS(mp)[i] = MP_PTRS(mp)[i - 1]; 7391 7392 /* Adjust free space offsets. */ 7393 ofs = MP_UPPER(mp) - node_size; 7394 mdb_cassert(mc, ofs >= MP_LOWER(mp) + sizeof(indx_t)); 7395 MP_PTRS(mp)[indx] = ofs; 7396 MP_UPPER(mp) = ofs; 7397 MP_LOWER(mp) += sizeof(indx_t); 7398 7399 /* Write the node data. */ 7400 node = NODEPTR(mp, indx); 7401 node->mn_ksize = (key == NULL) ? 0 : key->mv_size; 7402 node->mn_flags = flags; 7403 if (IS_LEAF(mp)) 7404 SETDSZ(node,data->mv_size); 7405 else 7406 SETPGNO(node,pgno); 7407 7408 if (key) 7409 memcpy(NODEKEY(node), key->mv_data, key->mv_size); 7410 7411 if (IS_LEAF(mp)) { 7412 ndata = NODEDATA(node); 7413 if (ofp == NULL) { 7414 if (F_ISSET(flags, F_BIGDATA)) 7415 memcpy(ndata, data->mv_data, sizeof(pgno_t)); 7416 else if (F_ISSET(flags, MDB_RESERVE)) 7417 data->mv_data = ndata; 7418 else 7419 memcpy(ndata, data->mv_data, data->mv_size); 7420 } else { 7421 memcpy(ndata, &ofp->mp_pgno, sizeof(pgno_t)); 7422 ndata = METADATA(ofp); 7423 if (F_ISSET(flags, MDB_RESERVE)) 7424 data->mv_data = ndata; 7425 else 7426 memcpy(ndata, data->mv_data, data->mv_size); 7427 } 7428 } 7429 7430 return MDB_SUCCESS; 7431 7432 full: 7433 DPRINTF(("not enough room in page %"Z"u, got %u ptrs", 7434 mdb_dbg_pgno(mp), NUMKEYS(mp))); 7435 DPRINTF(("upper-lower = %u - %u = %"Z"d", MP_UPPER(mp),MP_LOWER(mp),room)); 7436 DPRINTF(("node size = %"Z"u", node_size)); 7437 mc->mc_txn->mt_flags |= MDB_TXN_ERROR; 7438 return MDB_PAGE_FULL; 7439 } 7440 7441 /** Delete the specified node from a page. 7442 * @param[in] mc Cursor pointing to the node to delete. 7443 * @param[in] ksize The size of a node. Only used if the page is 7444 * part of a #MDB_DUPFIXED database. 7445 */ 7446 static void 7447 mdb_node_del(MDB_cursor *mc, int ksize) 7448 { 7449 MDB_page *mp = mc->mc_pg[mc->mc_top]; 7450 indx_t indx = mc->mc_ki[mc->mc_top]; 7451 unsigned int sz; 7452 indx_t i, j, numkeys, ptr; 7453 MDB_node *node; 7454 char *base; 7455 7456 DPRINTF(("delete node %u on %s page %"Z"u", indx, 7457 IS_LEAF(mp) ? "leaf" : "branch", mdb_dbg_pgno(mp))); 7458 numkeys = NUMKEYS(mp); 7459 mdb_cassert(mc, indx < numkeys); 7460 7461 if (IS_LEAF2(mp)) { 7462 int x = numkeys - 1 - indx; 7463 base = LEAF2KEY(mp, indx, ksize); 7464 if (x) 7465 memmove(base, base + ksize, x * ksize); 7466 MP_LOWER(mp) -= sizeof(indx_t); 7467 MP_UPPER(mp) += ksize - sizeof(indx_t); 7468 return; 7469 } 7470 7471 node = NODEPTR(mp, indx); 7472 sz = NODESIZE + node->mn_ksize; 7473 if (IS_LEAF(mp)) { 7474 if (F_ISSET(node->mn_flags, F_BIGDATA)) 7475 sz += sizeof(pgno_t); 7476 else 7477 sz += NODEDSZ(node); 7478 } 7479 sz = EVEN(sz); 7480 7481 ptr = MP_PTRS(mp)[indx]; 7482 for (i = j = 0; i < numkeys; i++) { 7483 if (i != indx) { 7484 MP_PTRS(mp)[j] = MP_PTRS(mp)[i]; 7485 if (MP_PTRS(mp)[i] < ptr) 7486 MP_PTRS(mp)[j] += sz; 7487 j++; 7488 } 7489 } 7490 7491 base = (char *)mp + MP_UPPER(mp) + PAGEBASE; 7492 memmove(base + sz, base, ptr - MP_UPPER(mp)); 7493 7494 MP_LOWER(mp) -= sizeof(indx_t); 7495 MP_UPPER(mp) += sz; 7496 } 7497 7498 /** Compact the main page after deleting a node on a subpage. 7499 * @param[in] mp The main page to operate on. 7500 * @param[in] indx The index of the subpage on the main page. 7501 */ 7502 static void 7503 mdb_node_shrink(MDB_page *mp, indx_t indx) 7504 { 7505 MDB_node *node; 7506 MDB_page *sp, *xp; 7507 char *base; 7508 indx_t delta, nsize, len, ptr; 7509 int i; 7510 7511 node = NODEPTR(mp, indx); 7512 sp = (MDB_page *)NODEDATA(node); 7513 delta = SIZELEFT(sp); 7514 nsize = NODEDSZ(node) - delta; 7515 7516 /* Prepare to shift upward, set len = length(subpage part to shift) */ 7517 if (IS_LEAF2(sp)) { 7518 len = nsize; 7519 if (nsize & 1) 7520 return; /* do not make the node uneven-sized */ 7521 } else { 7522 xp = (MDB_page *)((char *)sp + delta); /* destination subpage */ 7523 for (i = NUMKEYS(sp); --i >= 0; ) 7524 MP_PTRS(xp)[i] = MP_PTRS(sp)[i] - delta; 7525 len = PAGEHDRSZ; 7526 } 7527 MP_UPPER(sp) = MP_LOWER(sp); 7528 COPY_PGNO(MP_PGNO(sp), mp->mp_pgno); 7529 SETDSZ(node, nsize); 7530 7531 /* Shift <lower nodes...initial part of subpage> upward */ 7532 base = (char *)mp + mp->mp_upper + PAGEBASE; 7533 memmove(base + delta, base, (char *)sp + len - base); 7534 7535 ptr = mp->mp_ptrs[indx]; 7536 for (i = NUMKEYS(mp); --i >= 0; ) { 7537 if (mp->mp_ptrs[i] <= ptr) 7538 mp->mp_ptrs[i] += delta; 7539 } 7540 mp->mp_upper += delta; 7541 } 7542 7543 /** Initial setup of a sorted-dups cursor. 7544 * Sorted duplicates are implemented as a sub-database for the given key. 7545 * The duplicate data items are actually keys of the sub-database. 7546 * Operations on the duplicate data items are performed using a sub-cursor 7547 * initialized when the sub-database is first accessed. This function does 7548 * the preliminary setup of the sub-cursor, filling in the fields that 7549 * depend only on the parent DB. 7550 * @param[in] mc The main cursor whose sorted-dups cursor is to be initialized. 7551 */ 7552 static void 7553 mdb_xcursor_init0(MDB_cursor *mc) 7554 { 7555 MDB_xcursor *mx = mc->mc_xcursor; 7556 7557 mx->mx_cursor.mc_xcursor = NULL; 7558 mx->mx_cursor.mc_txn = mc->mc_txn; 7559 mx->mx_cursor.mc_db = &mx->mx_db; 7560 mx->mx_cursor.mc_dbx = &mx->mx_dbx; 7561 mx->mx_cursor.mc_dbi = mc->mc_dbi; 7562 mx->mx_cursor.mc_dbflag = &mx->mx_dbflag; 7563 mx->mx_cursor.mc_snum = 0; 7564 mx->mx_cursor.mc_top = 0; 7565 mx->mx_cursor.mc_flags = C_SUB; 7566 mx->mx_dbx.md_name.mv_size = 0; 7567 mx->mx_dbx.md_name.mv_data = NULL; 7568 mx->mx_dbx.md_cmp = mc->mc_dbx->md_dcmp; 7569 mx->mx_dbx.md_dcmp = NULL; 7570 mx->mx_dbx.md_rel = mc->mc_dbx->md_rel; 7571 } 7572 7573 /** Final setup of a sorted-dups cursor. 7574 * Sets up the fields that depend on the data from the main cursor. 7575 * @param[in] mc The main cursor whose sorted-dups cursor is to be initialized. 7576 * @param[in] node The data containing the #MDB_db record for the 7577 * sorted-dup database. 7578 */ 7579 static void 7580 mdb_xcursor_init1(MDB_cursor *mc, MDB_node *node) 7581 { 7582 MDB_xcursor *mx = mc->mc_xcursor; 7583 7584 if (node->mn_flags & F_SUBDATA) { 7585 memcpy(&mx->mx_db, NODEDATA(node), sizeof(MDB_db)); 7586 mx->mx_cursor.mc_pg[0] = 0; 7587 mx->mx_cursor.mc_snum = 0; 7588 mx->mx_cursor.mc_top = 0; 7589 mx->mx_cursor.mc_flags = C_SUB; 7590 } else { 7591 MDB_page *fp = NODEDATA(node); 7592 mx->mx_db.md_pad = 0; 7593 mx->mx_db.md_flags = 0; 7594 mx->mx_db.md_depth = 1; 7595 mx->mx_db.md_branch_pages = 0; 7596 mx->mx_db.md_leaf_pages = 1; 7597 mx->mx_db.md_overflow_pages = 0; 7598 mx->mx_db.md_entries = NUMKEYS(fp); 7599 COPY_PGNO(mx->mx_db.md_root, MP_PGNO(fp)); 7600 mx->mx_cursor.mc_snum = 1; 7601 mx->mx_cursor.mc_top = 0; 7602 mx->mx_cursor.mc_flags = C_INITIALIZED|C_SUB; 7603 mx->mx_cursor.mc_pg[0] = fp; 7604 mx->mx_cursor.mc_ki[0] = 0; 7605 if (mc->mc_db->md_flags & MDB_DUPFIXED) { 7606 mx->mx_db.md_flags = MDB_DUPFIXED; 7607 mx->mx_db.md_pad = fp->mp_pad; 7608 if (mc->mc_db->md_flags & MDB_INTEGERDUP) 7609 mx->mx_db.md_flags |= MDB_INTEGERKEY; 7610 } 7611 } 7612 DPRINTF(("Sub-db -%u root page %"Z"u", mx->mx_cursor.mc_dbi, 7613 mx->mx_db.md_root)); 7614 mx->mx_dbflag = DB_VALID|DB_USRVALID|DB_DUPDATA; 7615 #if UINT_MAX < SIZE_MAX 7616 if (mx->mx_dbx.md_cmp == mdb_cmp_int && mx->mx_db.md_pad == sizeof(size_t)) 7617 mx->mx_dbx.md_cmp = mdb_cmp_clong; 7618 #endif 7619 } 7620 7621 7622 /** Fixup a sorted-dups cursor due to underlying update. 7623 * Sets up some fields that depend on the data from the main cursor. 7624 * Almost the same as init1, but skips initialization steps if the 7625 * xcursor had already been used. 7626 * @param[in] mc The main cursor whose sorted-dups cursor is to be fixed up. 7627 * @param[in] src_mx The xcursor of an up-to-date cursor. 7628 * @param[in] new_dupdata True if converting from a non-#F_DUPDATA item. 7629 */ 7630 static void 7631 mdb_xcursor_init2(MDB_cursor *mc, MDB_xcursor *src_mx, int new_dupdata) 7632 { 7633 MDB_xcursor *mx = mc->mc_xcursor; 7634 7635 if (new_dupdata) { 7636 mx->mx_cursor.mc_snum = 1; 7637 mx->mx_cursor.mc_top = 0; 7638 mx->mx_cursor.mc_flags |= C_INITIALIZED; 7639 mx->mx_cursor.mc_ki[0] = 0; 7640 mx->mx_dbflag = DB_VALID|DB_USRVALID|DB_DUPDATA; 7641 #if UINT_MAX < SIZE_MAX 7642 mx->mx_dbx.md_cmp = src_mx->mx_dbx.md_cmp; 7643 #endif 7644 } else if (!(mx->mx_cursor.mc_flags & C_INITIALIZED)) { 7645 return; 7646 } 7647 mx->mx_db = src_mx->mx_db; 7648 mx->mx_cursor.mc_pg[0] = src_mx->mx_cursor.mc_pg[0]; 7649 DPRINTF(("Sub-db -%u root page %"Z"u", mx->mx_cursor.mc_dbi, 7650 mx->mx_db.md_root)); 7651 } 7652 7653 /** Initialize a cursor for a given transaction and database. */ 7654 static void 7655 mdb_cursor_init(MDB_cursor *mc, MDB_txn *txn, MDB_dbi dbi, MDB_xcursor *mx) 7656 { 7657 mc->mc_next = NULL; 7658 mc->mc_backup = NULL; 7659 mc->mc_dbi = dbi; 7660 mc->mc_txn = txn; 7661 mc->mc_db = &txn->mt_dbs[dbi]; 7662 mc->mc_dbx = &txn->mt_dbxs[dbi]; 7663 mc->mc_dbflag = &txn->mt_dbflags[dbi]; 7664 mc->mc_snum = 0; 7665 mc->mc_top = 0; 7666 mc->mc_pg[0] = 0; 7667 mc->mc_ki[0] = 0; 7668 mc->mc_flags = 0; 7669 if (txn->mt_dbs[dbi].md_flags & MDB_DUPSORT) { 7670 mdb_tassert(txn, mx != NULL); 7671 mc->mc_xcursor = mx; 7672 mdb_xcursor_init0(mc); 7673 } else { 7674 mc->mc_xcursor = NULL; 7675 } 7676 if (*mc->mc_dbflag & DB_STALE) { 7677 mdb_page_search(mc, NULL, MDB_PS_ROOTONLY); 7678 } 7679 } 7680 7681 int 7682 mdb_cursor_open(MDB_txn *txn, MDB_dbi dbi, MDB_cursor **ret) 7683 { 7684 MDB_cursor *mc; 7685 size_t size = sizeof(MDB_cursor); 7686 7687 if (!ret || !TXN_DBI_EXIST(txn, dbi, DB_VALID)) 7688 return EINVAL; 7689 7690 if (txn->mt_flags & MDB_TXN_BLOCKED) 7691 return MDB_BAD_TXN; 7692 7693 if (dbi == FREE_DBI && !F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) 7694 return EINVAL; 7695 7696 if (txn->mt_dbs[dbi].md_flags & MDB_DUPSORT) 7697 size += sizeof(MDB_xcursor); 7698 7699 if ((mc = malloc(size)) != NULL) { 7700 mdb_cursor_init(mc, txn, dbi, (MDB_xcursor *)(mc + 1)); 7701 if (txn->mt_cursors) { 7702 mc->mc_next = txn->mt_cursors[dbi]; 7703 txn->mt_cursors[dbi] = mc; 7704 mc->mc_flags |= C_UNTRACK; 7705 } 7706 } else { 7707 return ENOMEM; 7708 } 7709 7710 *ret = mc; 7711 7712 return MDB_SUCCESS; 7713 } 7714 7715 int 7716 mdb_cursor_renew(MDB_txn *txn, MDB_cursor *mc) 7717 { 7718 if (!mc || !TXN_DBI_EXIST(txn, mc->mc_dbi, DB_VALID)) 7719 return EINVAL; 7720 7721 if ((mc->mc_flags & C_UNTRACK) || txn->mt_cursors) 7722 return EINVAL; 7723 7724 if (txn->mt_flags & MDB_TXN_BLOCKED) 7725 return MDB_BAD_TXN; 7726 7727 mdb_cursor_init(mc, txn, mc->mc_dbi, mc->mc_xcursor); 7728 return MDB_SUCCESS; 7729 } 7730 7731 /* Return the count of duplicate data items for the current key */ 7732 int 7733 mdb_cursor_count(MDB_cursor *mc, size_t *countp) 7734 { 7735 MDB_node *leaf; 7736 7737 if (mc == NULL || countp == NULL) 7738 return EINVAL; 7739 7740 if (mc->mc_xcursor == NULL) 7741 return MDB_INCOMPATIBLE; 7742 7743 if (mc->mc_txn->mt_flags & MDB_TXN_BLOCKED) 7744 return MDB_BAD_TXN; 7745 7746 if (!(mc->mc_flags & C_INITIALIZED)) 7747 return EINVAL; 7748 7749 if (!mc->mc_snum) 7750 return MDB_NOTFOUND; 7751 7752 if (mc->mc_flags & C_EOF) { 7753 if (mc->mc_ki[mc->mc_top] >= NUMKEYS(mc->mc_pg[mc->mc_top])) 7754 return MDB_NOTFOUND; 7755 mc->mc_flags ^= C_EOF; 7756 } 7757 7758 leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]); 7759 if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) { 7760 *countp = 1; 7761 } else { 7762 if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED)) 7763 return EINVAL; 7764 7765 *countp = mc->mc_xcursor->mx_db.md_entries; 7766 } 7767 return MDB_SUCCESS; 7768 } 7769 7770 void 7771 mdb_cursor_close(MDB_cursor *mc) 7772 { 7773 if (mc && !mc->mc_backup) { 7774 /* remove from txn, if tracked */ 7775 if ((mc->mc_flags & C_UNTRACK) && mc->mc_txn->mt_cursors) { 7776 MDB_cursor **prev = &mc->mc_txn->mt_cursors[mc->mc_dbi]; 7777 while (*prev && *prev != mc) prev = &(*prev)->mc_next; 7778 if (*prev == mc) 7779 *prev = mc->mc_next; 7780 } 7781 free(mc); 7782 } 7783 } 7784 7785 MDB_txn * 7786 mdb_cursor_txn(MDB_cursor *mc) 7787 { 7788 if (!mc) return NULL; 7789 return mc->mc_txn; 7790 } 7791 7792 MDB_dbi 7793 mdb_cursor_dbi(MDB_cursor *mc) 7794 { 7795 return mc->mc_dbi; 7796 } 7797 7798 /** Replace the key for a branch node with a new key. 7799 * Set #MDB_TXN_ERROR on failure. 7800 * @param[in] mc Cursor pointing to the node to operate on. 7801 * @param[in] key The new key to use. 7802 * @return 0 on success, non-zero on failure. 7803 */ 7804 static int 7805 mdb_update_key(MDB_cursor *mc, MDB_val *key) 7806 { 7807 MDB_page *mp; 7808 MDB_node *node; 7809 char *base; 7810 size_t len; 7811 int delta, ksize, oksize; 7812 indx_t ptr, i, numkeys, indx; 7813 DKBUF; 7814 7815 indx = mc->mc_ki[mc->mc_top]; 7816 mp = mc->mc_pg[mc->mc_top]; 7817 node = NODEPTR(mp, indx); 7818 ptr = mp->mp_ptrs[indx]; 7819 #if MDB_DEBUG 7820 { 7821 MDB_val k2; 7822 char kbuf2[DKBUF_MAXKEYSIZE*2+1]; 7823 k2.mv_data = NODEKEY(node); 7824 k2.mv_size = node->mn_ksize; 7825 DPRINTF(("update key %u (ofs %u) [%s] to [%s] on page %"Z"u", 7826 indx, ptr, 7827 mdb_dkey(&k2, kbuf2), 7828 DKEY(key), 7829 mp->mp_pgno)); 7830 } 7831 #endif 7832 7833 /* Sizes must be 2-byte aligned. */ 7834 ksize = EVEN(key->mv_size); 7835 oksize = EVEN(node->mn_ksize); 7836 delta = ksize - oksize; 7837 7838 /* Shift node contents if EVEN(key length) changed. */ 7839 if (delta) { 7840 if (delta > 0 && SIZELEFT(mp) < delta) { 7841 pgno_t pgno; 7842 /* not enough space left, do a delete and split */ 7843 DPRINTF(("Not enough room, delta = %d, splitting...", delta)); 7844 pgno = NODEPGNO(node); 7845 mdb_node_del(mc, 0); 7846 return mdb_page_split(mc, key, NULL, pgno, MDB_SPLIT_REPLACE); 7847 } 7848 7849 numkeys = NUMKEYS(mp); 7850 for (i = 0; i < numkeys; i++) { 7851 if (mp->mp_ptrs[i] <= ptr) 7852 mp->mp_ptrs[i] -= delta; 7853 } 7854 7855 base = (char *)mp + mp->mp_upper + PAGEBASE; 7856 len = ptr - mp->mp_upper + NODESIZE; 7857 memmove(base - delta, base, len); 7858 mp->mp_upper -= delta; 7859 7860 node = NODEPTR(mp, indx); 7861 } 7862 7863 /* But even if no shift was needed, update ksize */ 7864 if (node->mn_ksize != key->mv_size) 7865 node->mn_ksize = key->mv_size; 7866 7867 if (key->mv_size) 7868 memcpy(NODEKEY(node), key->mv_data, key->mv_size); 7869 7870 return MDB_SUCCESS; 7871 } 7872 7873 static void 7874 mdb_cursor_copy(const MDB_cursor *csrc, MDB_cursor *cdst); 7875 7876 /** Perform \b act while tracking temporary cursor \b mn */ 7877 #define WITH_CURSOR_TRACKING(mn, act) do { \ 7878 MDB_cursor dummy, *tracked, **tp = &(mn).mc_txn->mt_cursors[mn.mc_dbi]; \ 7879 if ((mn).mc_flags & C_SUB) { \ 7880 dummy.mc_flags = C_INITIALIZED; \ 7881 dummy.mc_xcursor = (MDB_xcursor *)&(mn); \ 7882 tracked = &dummy; \ 7883 } else { \ 7884 tracked = &(mn); \ 7885 } \ 7886 tracked->mc_next = *tp; \ 7887 *tp = tracked; \ 7888 { act; } \ 7889 *tp = tracked->mc_next; \ 7890 } while (0) 7891 7892 /** Move a node from csrc to cdst. 7893 */ 7894 static int 7895 mdb_node_move(MDB_cursor *csrc, MDB_cursor *cdst, int fromleft) 7896 { 7897 MDB_node *srcnode; 7898 MDB_val key, data; 7899 pgno_t srcpg; 7900 MDB_cursor mn; 7901 int rc; 7902 unsigned short flags; 7903 7904 DKBUF; 7905 7906 /* Mark src and dst as dirty. */ 7907 if ((rc = mdb_page_touch(csrc)) || 7908 (rc = mdb_page_touch(cdst))) 7909 return rc; 7910 7911 if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) { 7912 key.mv_size = csrc->mc_db->md_pad; 7913 key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], csrc->mc_ki[csrc->mc_top], key.mv_size); 7914 data.mv_size = 0; 7915 data.mv_data = NULL; 7916 srcpg = 0; 7917 flags = 0; 7918 } else { 7919 srcnode = NODEPTR(csrc->mc_pg[csrc->mc_top], csrc->mc_ki[csrc->mc_top]); 7920 mdb_cassert(csrc, !((size_t)srcnode & 1)); 7921 srcpg = NODEPGNO(srcnode); 7922 flags = srcnode->mn_flags; 7923 if (csrc->mc_ki[csrc->mc_top] == 0 && IS_BRANCH(csrc->mc_pg[csrc->mc_top])) { 7924 unsigned int snum = csrc->mc_snum; 7925 MDB_node *s2; 7926 /* must find the lowest key below src */ 7927 rc = mdb_page_search_lowest(csrc); 7928 if (rc) 7929 return rc; 7930 if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) { 7931 key.mv_size = csrc->mc_db->md_pad; 7932 key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], 0, key.mv_size); 7933 } else { 7934 s2 = NODEPTR(csrc->mc_pg[csrc->mc_top], 0); 7935 key.mv_size = NODEKSZ(s2); 7936 key.mv_data = NODEKEY(s2); 7937 } 7938 csrc->mc_snum = snum--; 7939 csrc->mc_top = snum; 7940 } else { 7941 key.mv_size = NODEKSZ(srcnode); 7942 key.mv_data = NODEKEY(srcnode); 7943 } 7944 data.mv_size = NODEDSZ(srcnode); 7945 data.mv_data = NODEDATA(srcnode); 7946 } 7947 mn.mc_xcursor = NULL; 7948 if (IS_BRANCH(cdst->mc_pg[cdst->mc_top]) && cdst->mc_ki[cdst->mc_top] == 0) { 7949 unsigned int snum = cdst->mc_snum; 7950 MDB_node *s2; 7951 MDB_val bkey; 7952 /* must find the lowest key below dst */ 7953 mdb_cursor_copy(cdst, &mn); 7954 rc = mdb_page_search_lowest(&mn); 7955 if (rc) 7956 return rc; 7957 if (IS_LEAF2(mn.mc_pg[mn.mc_top])) { 7958 bkey.mv_size = mn.mc_db->md_pad; 7959 bkey.mv_data = LEAF2KEY(mn.mc_pg[mn.mc_top], 0, bkey.mv_size); 7960 } else { 7961 s2 = NODEPTR(mn.mc_pg[mn.mc_top], 0); 7962 bkey.mv_size = NODEKSZ(s2); 7963 bkey.mv_data = NODEKEY(s2); 7964 } 7965 mn.mc_snum = snum--; 7966 mn.mc_top = snum; 7967 mn.mc_ki[snum] = 0; 7968 rc = mdb_update_key(&mn, &bkey); 7969 if (rc) 7970 return rc; 7971 } 7972 7973 DPRINTF(("moving %s node %u [%s] on page %"Z"u to node %u on page %"Z"u", 7974 IS_LEAF(csrc->mc_pg[csrc->mc_top]) ? "leaf" : "branch", 7975 csrc->mc_ki[csrc->mc_top], 7976 DKEY(&key), 7977 csrc->mc_pg[csrc->mc_top]->mp_pgno, 7978 cdst->mc_ki[cdst->mc_top], cdst->mc_pg[cdst->mc_top]->mp_pgno)); 7979 7980 /* Add the node to the destination page. 7981 */ 7982 rc = mdb_node_add(cdst, cdst->mc_ki[cdst->mc_top], &key, &data, srcpg, flags); 7983 if (rc != MDB_SUCCESS) 7984 return rc; 7985 7986 /* Delete the node from the source page. 7987 */ 7988 mdb_node_del(csrc, key.mv_size); 7989 7990 { 7991 /* Adjust other cursors pointing to mp */ 7992 MDB_cursor *m2, *m3; 7993 MDB_dbi dbi = csrc->mc_dbi; 7994 MDB_page *mpd, *mps; 7995 7996 mps = csrc->mc_pg[csrc->mc_top]; 7997 /* If we're adding on the left, bump others up */ 7998 if (fromleft) { 7999 mpd = cdst->mc_pg[csrc->mc_top]; 8000 for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) { 8001 if (csrc->mc_flags & C_SUB) 8002 m3 = &m2->mc_xcursor->mx_cursor; 8003 else 8004 m3 = m2; 8005 if (!(m3->mc_flags & C_INITIALIZED) || m3->mc_top < csrc->mc_top) 8006 continue; 8007 if (m3 != cdst && 8008 m3->mc_pg[csrc->mc_top] == mpd && 8009 m3->mc_ki[csrc->mc_top] >= cdst->mc_ki[csrc->mc_top]) { 8010 m3->mc_ki[csrc->mc_top]++; 8011 } 8012 if (m3 !=csrc && 8013 m3->mc_pg[csrc->mc_top] == mps && 8014 m3->mc_ki[csrc->mc_top] == csrc->mc_ki[csrc->mc_top]) { 8015 m3->mc_pg[csrc->mc_top] = cdst->mc_pg[cdst->mc_top]; 8016 m3->mc_ki[csrc->mc_top] = cdst->mc_ki[cdst->mc_top]; 8017 m3->mc_ki[csrc->mc_top-1]++; 8018 } 8019 if (IS_LEAF(mps)) 8020 XCURSOR_REFRESH(m3, csrc->mc_top, m3->mc_pg[csrc->mc_top]); 8021 } 8022 } else 8023 /* Adding on the right, bump others down */ 8024 { 8025 for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) { 8026 if (csrc->mc_flags & C_SUB) 8027 m3 = &m2->mc_xcursor->mx_cursor; 8028 else 8029 m3 = m2; 8030 if (m3 == csrc) continue; 8031 if (!(m3->mc_flags & C_INITIALIZED) || m3->mc_top < csrc->mc_top) 8032 continue; 8033 if (m3->mc_pg[csrc->mc_top] == mps) { 8034 if (!m3->mc_ki[csrc->mc_top]) { 8035 m3->mc_pg[csrc->mc_top] = cdst->mc_pg[cdst->mc_top]; 8036 m3->mc_ki[csrc->mc_top] = cdst->mc_ki[cdst->mc_top]; 8037 m3->mc_ki[csrc->mc_top-1]--; 8038 } else { 8039 m3->mc_ki[csrc->mc_top]--; 8040 } 8041 if (IS_LEAF(mps)) 8042 XCURSOR_REFRESH(m3, csrc->mc_top, m3->mc_pg[csrc->mc_top]); 8043 } 8044 } 8045 } 8046 } 8047 8048 /* Update the parent separators. 8049 */ 8050 if (csrc->mc_ki[csrc->mc_top] == 0) { 8051 if (csrc->mc_ki[csrc->mc_top-1] != 0) { 8052 if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) { 8053 key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], 0, key.mv_size); 8054 } else { 8055 srcnode = NODEPTR(csrc->mc_pg[csrc->mc_top], 0); 8056 key.mv_size = NODEKSZ(srcnode); 8057 key.mv_data = NODEKEY(srcnode); 8058 } 8059 DPRINTF(("update separator for source page %"Z"u to [%s]", 8060 csrc->mc_pg[csrc->mc_top]->mp_pgno, DKEY(&key))); 8061 mdb_cursor_copy(csrc, &mn); 8062 mn.mc_snum--; 8063 mn.mc_top--; 8064 /* We want mdb_rebalance to find mn when doing fixups */ 8065 WITH_CURSOR_TRACKING(mn, 8066 rc = mdb_update_key(&mn, &key)); 8067 if (rc) 8068 return rc; 8069 } 8070 if (IS_BRANCH(csrc->mc_pg[csrc->mc_top])) { 8071 MDB_val nullkey; 8072 indx_t ix = csrc->mc_ki[csrc->mc_top]; 8073 nullkey.mv_size = 0; 8074 csrc->mc_ki[csrc->mc_top] = 0; 8075 rc = mdb_update_key(csrc, &nullkey); 8076 csrc->mc_ki[csrc->mc_top] = ix; 8077 mdb_cassert(csrc, rc == MDB_SUCCESS); 8078 } 8079 } 8080 8081 if (cdst->mc_ki[cdst->mc_top] == 0) { 8082 if (cdst->mc_ki[cdst->mc_top-1] != 0) { 8083 if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) { 8084 key.mv_data = LEAF2KEY(cdst->mc_pg[cdst->mc_top], 0, key.mv_size); 8085 } else { 8086 srcnode = NODEPTR(cdst->mc_pg[cdst->mc_top], 0); 8087 key.mv_size = NODEKSZ(srcnode); 8088 key.mv_data = NODEKEY(srcnode); 8089 } 8090 DPRINTF(("update separator for destination page %"Z"u to [%s]", 8091 cdst->mc_pg[cdst->mc_top]->mp_pgno, DKEY(&key))); 8092 mdb_cursor_copy(cdst, &mn); 8093 mn.mc_snum--; 8094 mn.mc_top--; 8095 /* We want mdb_rebalance to find mn when doing fixups */ 8096 WITH_CURSOR_TRACKING(mn, 8097 rc = mdb_update_key(&mn, &key)); 8098 if (rc) 8099 return rc; 8100 } 8101 if (IS_BRANCH(cdst->mc_pg[cdst->mc_top])) { 8102 MDB_val nullkey; 8103 indx_t ix = cdst->mc_ki[cdst->mc_top]; 8104 nullkey.mv_size = 0; 8105 cdst->mc_ki[cdst->mc_top] = 0; 8106 rc = mdb_update_key(cdst, &nullkey); 8107 cdst->mc_ki[cdst->mc_top] = ix; 8108 mdb_cassert(cdst, rc == MDB_SUCCESS); 8109 } 8110 } 8111 8112 return MDB_SUCCESS; 8113 } 8114 8115 /** Merge one page into another. 8116 * The nodes from the page pointed to by \b csrc will 8117 * be copied to the page pointed to by \b cdst and then 8118 * the \b csrc page will be freed. 8119 * @param[in] csrc Cursor pointing to the source page. 8120 * @param[in] cdst Cursor pointing to the destination page. 8121 * @return 0 on success, non-zero on failure. 8122 */ 8123 static int 8124 mdb_page_merge(MDB_cursor *csrc, MDB_cursor *cdst) 8125 { 8126 MDB_page *psrc, *pdst; 8127 MDB_node *srcnode; 8128 MDB_val key, data; 8129 unsigned nkeys; 8130 int rc; 8131 indx_t i, j; 8132 8133 psrc = csrc->mc_pg[csrc->mc_top]; 8134 pdst = cdst->mc_pg[cdst->mc_top]; 8135 8136 DPRINTF(("merging page %"Z"u into %"Z"u", psrc->mp_pgno, pdst->mp_pgno)); 8137 8138 mdb_cassert(csrc, csrc->mc_snum > 1); /* can't merge root page */ 8139 mdb_cassert(csrc, cdst->mc_snum > 1); 8140 8141 /* Mark dst as dirty. */ 8142 if ((rc = mdb_page_touch(cdst))) 8143 return rc; 8144 8145 /* get dst page again now that we've touched it. */ 8146 pdst = cdst->mc_pg[cdst->mc_top]; 8147 8148 /* Move all nodes from src to dst. 8149 */ 8150 j = nkeys = NUMKEYS(pdst); 8151 if (IS_LEAF2(psrc)) { 8152 key.mv_size = csrc->mc_db->md_pad; 8153 key.mv_data = METADATA(psrc); 8154 for (i = 0; i < NUMKEYS(psrc); i++, j++) { 8155 rc = mdb_node_add(cdst, j, &key, NULL, 0, 0); 8156 if (rc != MDB_SUCCESS) 8157 return rc; 8158 key.mv_data = (char *)key.mv_data + key.mv_size; 8159 } 8160 } else { 8161 for (i = 0; i < NUMKEYS(psrc); i++, j++) { 8162 srcnode = NODEPTR(psrc, i); 8163 if (i == 0 && IS_BRANCH(psrc)) { 8164 MDB_cursor mn; 8165 MDB_node *s2; 8166 mdb_cursor_copy(csrc, &mn); 8167 mn.mc_xcursor = NULL; 8168 /* must find the lowest key below src */ 8169 rc = mdb_page_search_lowest(&mn); 8170 if (rc) 8171 return rc; 8172 if (IS_LEAF2(mn.mc_pg[mn.mc_top])) { 8173 key.mv_size = mn.mc_db->md_pad; 8174 key.mv_data = LEAF2KEY(mn.mc_pg[mn.mc_top], 0, key.mv_size); 8175 } else { 8176 s2 = NODEPTR(mn.mc_pg[mn.mc_top], 0); 8177 key.mv_size = NODEKSZ(s2); 8178 key.mv_data = NODEKEY(s2); 8179 } 8180 } else { 8181 key.mv_size = srcnode->mn_ksize; 8182 key.mv_data = NODEKEY(srcnode); 8183 } 8184 8185 data.mv_size = NODEDSZ(srcnode); 8186 data.mv_data = NODEDATA(srcnode); 8187 rc = mdb_node_add(cdst, j, &key, &data, NODEPGNO(srcnode), srcnode->mn_flags); 8188 if (rc != MDB_SUCCESS) 8189 return rc; 8190 } 8191 } 8192 8193 DPRINTF(("dst page %"Z"u now has %u keys (%.1f%% filled)", 8194 pdst->mp_pgno, NUMKEYS(pdst), 8195 (float)PAGEFILL(cdst->mc_txn->mt_env, pdst) / 10)); 8196 8197 /* Unlink the src page from parent and add to free list. 8198 */ 8199 csrc->mc_top--; 8200 mdb_node_del(csrc, 0); 8201 if (csrc->mc_ki[csrc->mc_top] == 0) { 8202 key.mv_size = 0; 8203 rc = mdb_update_key(csrc, &key); 8204 if (rc) { 8205 csrc->mc_top++; 8206 return rc; 8207 } 8208 } 8209 csrc->mc_top++; 8210 8211 psrc = csrc->mc_pg[csrc->mc_top]; 8212 /* If not operating on FreeDB, allow this page to be reused 8213 * in this txn. Otherwise just add to free list. 8214 */ 8215 rc = mdb_page_loose(csrc, psrc); 8216 if (rc) 8217 return rc; 8218 if (IS_LEAF(psrc)) 8219 csrc->mc_db->md_leaf_pages--; 8220 else 8221 csrc->mc_db->md_branch_pages--; 8222 { 8223 /* Adjust other cursors pointing to mp */ 8224 MDB_cursor *m2, *m3; 8225 MDB_dbi dbi = csrc->mc_dbi; 8226 unsigned int top = csrc->mc_top; 8227 8228 for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) { 8229 if (csrc->mc_flags & C_SUB) 8230 m3 = &m2->mc_xcursor->mx_cursor; 8231 else 8232 m3 = m2; 8233 if (m3 == csrc) continue; 8234 if (m3->mc_snum < csrc->mc_snum) continue; 8235 if (m3->mc_pg[top] == psrc) { 8236 m3->mc_pg[top] = pdst; 8237 m3->mc_ki[top] += nkeys; 8238 m3->mc_ki[top-1] = cdst->mc_ki[top-1]; 8239 } else if (m3->mc_pg[top-1] == csrc->mc_pg[top-1] && 8240 m3->mc_ki[top-1] > csrc->mc_ki[top-1]) { 8241 m3->mc_ki[top-1]--; 8242 } 8243 if (IS_LEAF(psrc)) 8244 XCURSOR_REFRESH(m3, top, m3->mc_pg[top]); 8245 } 8246 } 8247 { 8248 unsigned int snum = cdst->mc_snum; 8249 uint16_t depth = cdst->mc_db->md_depth; 8250 mdb_cursor_pop(cdst); 8251 rc = mdb_rebalance(cdst); 8252 /* Did the tree height change? */ 8253 if (depth != cdst->mc_db->md_depth) 8254 snum += cdst->mc_db->md_depth - depth; 8255 cdst->mc_snum = snum; 8256 cdst->mc_top = snum-1; 8257 } 8258 return rc; 8259 } 8260 8261 /** Copy the contents of a cursor. 8262 * @param[in] csrc The cursor to copy from. 8263 * @param[out] cdst The cursor to copy to. 8264 */ 8265 static void 8266 mdb_cursor_copy(const MDB_cursor *csrc, MDB_cursor *cdst) 8267 { 8268 unsigned int i; 8269 8270 cdst->mc_txn = csrc->mc_txn; 8271 cdst->mc_dbi = csrc->mc_dbi; 8272 cdst->mc_db = csrc->mc_db; 8273 cdst->mc_dbx = csrc->mc_dbx; 8274 cdst->mc_snum = csrc->mc_snum; 8275 cdst->mc_top = csrc->mc_top; 8276 cdst->mc_flags = csrc->mc_flags; 8277 8278 for (i=0; i<csrc->mc_snum; i++) { 8279 cdst->mc_pg[i] = csrc->mc_pg[i]; 8280 cdst->mc_ki[i] = csrc->mc_ki[i]; 8281 } 8282 } 8283 8284 /** Rebalance the tree after a delete operation. 8285 * @param[in] mc Cursor pointing to the page where rebalancing 8286 * should begin. 8287 * @return 0 on success, non-zero on failure. 8288 */ 8289 static int 8290 mdb_rebalance(MDB_cursor *mc) 8291 { 8292 MDB_node *node; 8293 int rc, fromleft; 8294 unsigned int ptop, minkeys, thresh; 8295 MDB_cursor mn; 8296 indx_t oldki; 8297 8298 if (IS_BRANCH(mc->mc_pg[mc->mc_top])) { 8299 minkeys = 2; 8300 thresh = 1; 8301 } else { 8302 minkeys = 1; 8303 thresh = FILL_THRESHOLD; 8304 } 8305 DPRINTF(("rebalancing %s page %"Z"u (has %u keys, %.1f%% full)", 8306 IS_LEAF(mc->mc_pg[mc->mc_top]) ? "leaf" : "branch", 8307 mdb_dbg_pgno(mc->mc_pg[mc->mc_top]), NUMKEYS(mc->mc_pg[mc->mc_top]), 8308 (float)PAGEFILL(mc->mc_txn->mt_env, mc->mc_pg[mc->mc_top]) / 10)); 8309 8310 if (PAGEFILL(mc->mc_txn->mt_env, mc->mc_pg[mc->mc_top]) >= thresh && 8311 NUMKEYS(mc->mc_pg[mc->mc_top]) >= minkeys) { 8312 DPRINTF(("no need to rebalance page %"Z"u, above fill threshold", 8313 mdb_dbg_pgno(mc->mc_pg[mc->mc_top]))); 8314 return MDB_SUCCESS; 8315 } 8316 8317 if (mc->mc_snum < 2) { 8318 MDB_page *mp = mc->mc_pg[0]; 8319 if (IS_SUBP(mp)) { 8320 DPUTS("Can't rebalance a subpage, ignoring"); 8321 return MDB_SUCCESS; 8322 } 8323 if (NUMKEYS(mp) == 0) { 8324 DPUTS("tree is completely empty"); 8325 mc->mc_db->md_root = P_INVALID; 8326 mc->mc_db->md_depth = 0; 8327 mc->mc_db->md_leaf_pages = 0; 8328 rc = mdb_midl_append(&mc->mc_txn->mt_free_pgs, mp->mp_pgno); 8329 if (rc) 8330 return rc; 8331 /* Adjust cursors pointing to mp */ 8332 mc->mc_snum = 0; 8333 mc->mc_top = 0; 8334 mc->mc_flags &= ~C_INITIALIZED; 8335 { 8336 MDB_cursor *m2, *m3; 8337 MDB_dbi dbi = mc->mc_dbi; 8338 8339 for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) { 8340 if (mc->mc_flags & C_SUB) 8341 m3 = &m2->mc_xcursor->mx_cursor; 8342 else 8343 m3 = m2; 8344 if (!(m3->mc_flags & C_INITIALIZED) || (m3->mc_snum < mc->mc_snum)) 8345 continue; 8346 if (m3->mc_pg[0] == mp) { 8347 m3->mc_snum = 0; 8348 m3->mc_top = 0; 8349 m3->mc_flags &= ~C_INITIALIZED; 8350 } 8351 } 8352 } 8353 } else if (IS_BRANCH(mp) && NUMKEYS(mp) == 1) { 8354 int i; 8355 DPUTS("collapsing root page!"); 8356 rc = mdb_midl_append(&mc->mc_txn->mt_free_pgs, mp->mp_pgno); 8357 if (rc) 8358 return rc; 8359 mc->mc_db->md_root = NODEPGNO(NODEPTR(mp, 0)); 8360 rc = mdb_page_get(mc, mc->mc_db->md_root, &mc->mc_pg[0], NULL); 8361 if (rc) 8362 return rc; 8363 mc->mc_db->md_depth--; 8364 mc->mc_db->md_branch_pages--; 8365 mc->mc_ki[0] = mc->mc_ki[1]; 8366 for (i = 1; i<mc->mc_db->md_depth; i++) { 8367 mc->mc_pg[i] = mc->mc_pg[i+1]; 8368 mc->mc_ki[i] = mc->mc_ki[i+1]; 8369 } 8370 { 8371 /* Adjust other cursors pointing to mp */ 8372 MDB_cursor *m2, *m3; 8373 MDB_dbi dbi = mc->mc_dbi; 8374 8375 for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) { 8376 if (mc->mc_flags & C_SUB) 8377 m3 = &m2->mc_xcursor->mx_cursor; 8378 else 8379 m3 = m2; 8380 if (m3 == mc) continue; 8381 if (!(m3->mc_flags & C_INITIALIZED)) 8382 continue; 8383 if (m3->mc_pg[0] == mp) { 8384 for (i=0; i<mc->mc_db->md_depth; i++) { 8385 m3->mc_pg[i] = m3->mc_pg[i+1]; 8386 m3->mc_ki[i] = m3->mc_ki[i+1]; 8387 } 8388 m3->mc_snum--; 8389 m3->mc_top--; 8390 } 8391 } 8392 } 8393 } else 8394 DPUTS("root page doesn't need rebalancing"); 8395 return MDB_SUCCESS; 8396 } 8397 8398 /* The parent (branch page) must have at least 2 pointers, 8399 * otherwise the tree is invalid. 8400 */ 8401 ptop = mc->mc_top-1; 8402 mdb_cassert(mc, NUMKEYS(mc->mc_pg[ptop]) > 1); 8403 8404 /* Leaf page fill factor is below the threshold. 8405 * Try to move keys from left or right neighbor, or 8406 * merge with a neighbor page. 8407 */ 8408 8409 /* Find neighbors. 8410 */ 8411 mdb_cursor_copy(mc, &mn); 8412 mn.mc_xcursor = NULL; 8413 8414 oldki = mc->mc_ki[mc->mc_top]; 8415 if (mc->mc_ki[ptop] == 0) { 8416 /* We're the leftmost leaf in our parent. 8417 */ 8418 DPUTS("reading right neighbor"); 8419 mn.mc_ki[ptop]++; 8420 node = NODEPTR(mc->mc_pg[ptop], mn.mc_ki[ptop]); 8421 rc = mdb_page_get(mc, NODEPGNO(node), &mn.mc_pg[mn.mc_top], NULL); 8422 if (rc) 8423 return rc; 8424 mn.mc_ki[mn.mc_top] = 0; 8425 mc->mc_ki[mc->mc_top] = NUMKEYS(mc->mc_pg[mc->mc_top]); 8426 fromleft = 0; 8427 } else { 8428 /* There is at least one neighbor to the left. 8429 */ 8430 DPUTS("reading left neighbor"); 8431 mn.mc_ki[ptop]--; 8432 node = NODEPTR(mc->mc_pg[ptop], mn.mc_ki[ptop]); 8433 rc = mdb_page_get(mc, NODEPGNO(node), &mn.mc_pg[mn.mc_top], NULL); 8434 if (rc) 8435 return rc; 8436 mn.mc_ki[mn.mc_top] = NUMKEYS(mn.mc_pg[mn.mc_top]) - 1; 8437 mc->mc_ki[mc->mc_top] = 0; 8438 fromleft = 1; 8439 } 8440 8441 DPRINTF(("found neighbor page %"Z"u (%u keys, %.1f%% full)", 8442 mn.mc_pg[mn.mc_top]->mp_pgno, NUMKEYS(mn.mc_pg[mn.mc_top]), 8443 (float)PAGEFILL(mc->mc_txn->mt_env, mn.mc_pg[mn.mc_top]) / 10)); 8444 8445 /* If the neighbor page is above threshold and has enough keys, 8446 * move one key from it. Otherwise we should try to merge them. 8447 * (A branch page must never have less than 2 keys.) 8448 */ 8449 if (PAGEFILL(mc->mc_txn->mt_env, mn.mc_pg[mn.mc_top]) >= thresh && NUMKEYS(mn.mc_pg[mn.mc_top]) > minkeys) { 8450 rc = mdb_node_move(&mn, mc, fromleft); 8451 if (fromleft) { 8452 /* if we inserted on left, bump position up */ 8453 oldki++; 8454 } 8455 } else { 8456 if (!fromleft) { 8457 rc = mdb_page_merge(&mn, mc); 8458 } else { 8459 oldki += NUMKEYS(mn.mc_pg[mn.mc_top]); 8460 mn.mc_ki[mn.mc_top] += mc->mc_ki[mn.mc_top] + 1; 8461 /* We want mdb_rebalance to find mn when doing fixups */ 8462 WITH_CURSOR_TRACKING(mn, 8463 rc = mdb_page_merge(mc, &mn)); 8464 mdb_cursor_copy(&mn, mc); 8465 } 8466 mc->mc_flags &= ~C_EOF; 8467 } 8468 mc->mc_ki[mc->mc_top] = oldki; 8469 return rc; 8470 } 8471 8472 /** Complete a delete operation started by #mdb_cursor_del(). */ 8473 static int 8474 mdb_cursor_del0(MDB_cursor *mc) 8475 { 8476 int rc; 8477 MDB_page *mp; 8478 indx_t ki; 8479 unsigned int nkeys; 8480 MDB_cursor *m2, *m3; 8481 MDB_dbi dbi = mc->mc_dbi; 8482 8483 ki = mc->mc_ki[mc->mc_top]; 8484 mp = mc->mc_pg[mc->mc_top]; 8485 mdb_node_del(mc, mc->mc_db->md_pad); 8486 mc->mc_db->md_entries--; 8487 { 8488 /* Adjust other cursors pointing to mp */ 8489 for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) { 8490 m3 = (mc->mc_flags & C_SUB) ? &m2->mc_xcursor->mx_cursor : m2; 8491 if (! (m2->mc_flags & m3->mc_flags & C_INITIALIZED)) 8492 continue; 8493 if (m3 == mc || m3->mc_snum < mc->mc_snum) 8494 continue; 8495 if (m3->mc_pg[mc->mc_top] == mp) { 8496 if (m3->mc_ki[mc->mc_top] == ki) { 8497 m3->mc_flags |= C_DEL; 8498 if (mc->mc_db->md_flags & MDB_DUPSORT) { 8499 /* Sub-cursor referred into dataset which is gone */ 8500 m3->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF); 8501 } 8502 continue; 8503 } else if (m3->mc_ki[mc->mc_top] > ki) { 8504 m3->mc_ki[mc->mc_top]--; 8505 } 8506 XCURSOR_REFRESH(m3, mc->mc_top, mp); 8507 } 8508 } 8509 } 8510 rc = mdb_rebalance(mc); 8511 if (rc) 8512 goto fail; 8513 8514 /* DB is totally empty now, just bail out. 8515 * Other cursors adjustments were already done 8516 * by mdb_rebalance and aren't needed here. 8517 */ 8518 if (!mc->mc_snum) { 8519 mc->mc_flags |= C_EOF; 8520 return rc; 8521 } 8522 8523 mp = mc->mc_pg[mc->mc_top]; 8524 nkeys = NUMKEYS(mp); 8525 8526 /* Adjust other cursors pointing to mp */ 8527 for (m2 = mc->mc_txn->mt_cursors[dbi]; !rc && m2; m2=m2->mc_next) { 8528 m3 = (mc->mc_flags & C_SUB) ? &m2->mc_xcursor->mx_cursor : m2; 8529 if (!(m2->mc_flags & m3->mc_flags & C_INITIALIZED)) 8530 continue; 8531 if (m3->mc_snum < mc->mc_snum) 8532 continue; 8533 if (m3->mc_pg[mc->mc_top] == mp) { 8534 if (m3->mc_ki[mc->mc_top] >= mc->mc_ki[mc->mc_top]) { 8535 /* if m3 points past last node in page, find next sibling */ 8536 if (m3->mc_ki[mc->mc_top] >= nkeys) { 8537 rc = mdb_cursor_sibling(m3, 1); 8538 if (rc == MDB_NOTFOUND) { 8539 m3->mc_flags |= C_EOF; 8540 rc = MDB_SUCCESS; 8541 continue; 8542 } 8543 if (rc) 8544 goto fail; 8545 } 8546 if (m3->mc_xcursor && !(m3->mc_flags & C_EOF)) { 8547 MDB_node *node = NODEPTR(m3->mc_pg[m3->mc_top], m3->mc_ki[m3->mc_top]); 8548 /* If this node has dupdata, it may need to be reinited 8549 * because its data has moved. 8550 * If the xcursor was not initd it must be reinited. 8551 * Else if node points to a subDB, nothing is needed. 8552 * Else (xcursor was initd, not a subDB) needs mc_pg[0] reset. 8553 */ 8554 if (node->mn_flags & F_DUPDATA) { 8555 if (m3->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) { 8556 if (!(node->mn_flags & F_SUBDATA)) 8557 m3->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(node); 8558 } else { 8559 mdb_xcursor_init1(m3, node); 8560 rc = mdb_cursor_first(&m3->mc_xcursor->mx_cursor, NULL, NULL); 8561 if (rc) 8562 goto fail; 8563 } 8564 } 8565 m3->mc_xcursor->mx_cursor.mc_flags |= C_DEL; 8566 } 8567 } 8568 } 8569 } 8570 mc->mc_flags |= C_DEL; 8571 8572 fail: 8573 if (rc) 8574 mc->mc_txn->mt_flags |= MDB_TXN_ERROR; 8575 return rc; 8576 } 8577 8578 int 8579 mdb_del(MDB_txn *txn, MDB_dbi dbi, 8580 MDB_val *key, MDB_val *data) 8581 { 8582 if (!key || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 8583 return EINVAL; 8584 8585 if (txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED)) 8586 return (txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN; 8587 8588 if (!F_ISSET(txn->mt_dbs[dbi].md_flags, MDB_DUPSORT)) { 8589 /* must ignore any data */ 8590 data = NULL; 8591 } 8592 8593 return mdb_del0(txn, dbi, key, data, 0); 8594 } 8595 8596 static int 8597 mdb_del0(MDB_txn *txn, MDB_dbi dbi, 8598 MDB_val *key, MDB_val *data, unsigned flags) 8599 { 8600 MDB_cursor mc; 8601 MDB_xcursor mx; 8602 MDB_cursor_op op; 8603 MDB_val rdata, *xdata; 8604 int rc, exact = 0; 8605 DKBUF; 8606 8607 DPRINTF(("====> delete db %u key [%s]", dbi, DKEY(key))); 8608 8609 mdb_cursor_init(&mc, txn, dbi, &mx); 8610 8611 if (data) { 8612 op = MDB_GET_BOTH; 8613 rdata = *data; 8614 xdata = &rdata; 8615 } else { 8616 op = MDB_SET; 8617 xdata = NULL; 8618 flags |= MDB_NODUPDATA; 8619 } 8620 rc = mdb_cursor_set(&mc, key, xdata, op, &exact); 8621 if (rc == 0) { 8622 /* let mdb_page_split know about this cursor if needed: 8623 * delete will trigger a rebalance; if it needs to move 8624 * a node from one page to another, it will have to 8625 * update the parent's separator key(s). If the new sepkey 8626 * is larger than the current one, the parent page may 8627 * run out of space, triggering a split. We need this 8628 * cursor to be consistent until the end of the rebalance. 8629 */ 8630 mc.mc_flags |= C_UNTRACK; 8631 mc.mc_next = txn->mt_cursors[dbi]; 8632 txn->mt_cursors[dbi] = &mc; 8633 rc = mdb_cursor_del(&mc, flags); 8634 txn->mt_cursors[dbi] = mc.mc_next; 8635 } 8636 return rc; 8637 } 8638 8639 /** Split a page and insert a new node. 8640 * Set #MDB_TXN_ERROR on failure. 8641 * @param[in,out] mc Cursor pointing to the page and desired insertion index. 8642 * The cursor will be updated to point to the actual page and index where 8643 * the node got inserted after the split. 8644 * @param[in] newkey The key for the newly inserted node. 8645 * @param[in] newdata The data for the newly inserted node. 8646 * @param[in] newpgno The page number, if the new node is a branch node. 8647 * @param[in] nflags The #NODE_ADD_FLAGS for the new node. 8648 * @return 0 on success, non-zero on failure. 8649 */ 8650 static int 8651 mdb_page_split(MDB_cursor *mc, MDB_val *newkey, MDB_val *newdata, pgno_t newpgno, 8652 unsigned int nflags) 8653 { 8654 unsigned int flags; 8655 int rc = MDB_SUCCESS, new_root = 0, did_split = 0; 8656 indx_t newindx; 8657 pgno_t pgno = 0; 8658 int i, j, split_indx, nkeys, pmax; 8659 MDB_env *env = mc->mc_txn->mt_env; 8660 MDB_node *node; 8661 MDB_val sepkey, rkey, xdata, *rdata = &xdata; 8662 MDB_page *copy = NULL; 8663 MDB_page *mp, *rp, *pp; 8664 int ptop; 8665 MDB_cursor mn; 8666 DKBUF; 8667 8668 mp = mc->mc_pg[mc->mc_top]; 8669 newindx = mc->mc_ki[mc->mc_top]; 8670 nkeys = NUMKEYS(mp); 8671 8672 DPRINTF(("-----> splitting %s page %"Z"u and adding [%s] at index %i/%i", 8673 IS_LEAF(mp) ? "leaf" : "branch", mp->mp_pgno, 8674 DKEY(newkey), mc->mc_ki[mc->mc_top], nkeys)); 8675 8676 /* Create a right sibling. */ 8677 if ((rc = mdb_page_new(mc, mp->mp_flags, 1, &rp))) 8678 return rc; 8679 rp->mp_pad = mp->mp_pad; 8680 DPRINTF(("new right sibling: page %"Z"u", rp->mp_pgno)); 8681 8682 /* Usually when splitting the root page, the cursor 8683 * height is 1. But when called from mdb_update_key, 8684 * the cursor height may be greater because it walks 8685 * up the stack while finding the branch slot to update. 8686 */ 8687 if (mc->mc_top < 1) { 8688 if ((rc = mdb_page_new(mc, P_BRANCH, 1, &pp))) 8689 goto done; 8690 /* shift current top to make room for new parent */ 8691 for (i=mc->mc_snum; i>0; i--) { 8692 mc->mc_pg[i] = mc->mc_pg[i-1]; 8693 mc->mc_ki[i] = mc->mc_ki[i-1]; 8694 } 8695 mc->mc_pg[0] = pp; 8696 mc->mc_ki[0] = 0; 8697 mc->mc_db->md_root = pp->mp_pgno; 8698 DPRINTF(("root split! new root = %"Z"u", pp->mp_pgno)); 8699 new_root = mc->mc_db->md_depth++; 8700 8701 /* Add left (implicit) pointer. */ 8702 if ((rc = mdb_node_add(mc, 0, NULL, NULL, mp->mp_pgno, 0)) != MDB_SUCCESS) { 8703 /* undo the pre-push */ 8704 mc->mc_pg[0] = mc->mc_pg[1]; 8705 mc->mc_ki[0] = mc->mc_ki[1]; 8706 mc->mc_db->md_root = mp->mp_pgno; 8707 mc->mc_db->md_depth--; 8708 goto done; 8709 } 8710 mc->mc_snum++; 8711 mc->mc_top++; 8712 ptop = 0; 8713 } else { 8714 ptop = mc->mc_top-1; 8715 DPRINTF(("parent branch page is %"Z"u", mc->mc_pg[ptop]->mp_pgno)); 8716 } 8717 8718 mdb_cursor_copy(mc, &mn); 8719 mn.mc_xcursor = NULL; 8720 mn.mc_pg[mn.mc_top] = rp; 8721 mn.mc_ki[ptop] = mc->mc_ki[ptop]+1; 8722 8723 if (nflags & MDB_APPEND) { 8724 mn.mc_ki[mn.mc_top] = 0; 8725 sepkey = *newkey; 8726 split_indx = newindx; 8727 nkeys = 0; 8728 } else { 8729 8730 split_indx = (nkeys+1) / 2; 8731 8732 if (IS_LEAF2(rp)) { 8733 char *split, *ins; 8734 int x; 8735 unsigned int lsize, rsize, ksize; 8736 /* Move half of the keys to the right sibling */ 8737 x = mc->mc_ki[mc->mc_top] - split_indx; 8738 ksize = mc->mc_db->md_pad; 8739 split = LEAF2KEY(mp, split_indx, ksize); 8740 rsize = (nkeys - split_indx) * ksize; 8741 lsize = (nkeys - split_indx) * sizeof(indx_t); 8742 mp->mp_lower -= lsize; 8743 rp->mp_lower += lsize; 8744 mp->mp_upper += rsize - lsize; 8745 rp->mp_upper -= rsize - lsize; 8746 sepkey.mv_size = ksize; 8747 if (newindx == split_indx) { 8748 sepkey.mv_data = newkey->mv_data; 8749 } else { 8750 sepkey.mv_data = split; 8751 } 8752 if (x<0) { 8753 ins = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], ksize); 8754 memcpy(rp->mp_ptrs, split, rsize); 8755 sepkey.mv_data = rp->mp_ptrs; 8756 memmove(ins+ksize, ins, (split_indx - mc->mc_ki[mc->mc_top]) * ksize); 8757 memcpy(ins, newkey->mv_data, ksize); 8758 mp->mp_lower += sizeof(indx_t); 8759 mp->mp_upper -= ksize - sizeof(indx_t); 8760 } else { 8761 if (x) 8762 memcpy(rp->mp_ptrs, split, x * ksize); 8763 ins = LEAF2KEY(rp, x, ksize); 8764 memcpy(ins, newkey->mv_data, ksize); 8765 memcpy(ins+ksize, split + x * ksize, rsize - x * ksize); 8766 rp->mp_lower += sizeof(indx_t); 8767 rp->mp_upper -= ksize - sizeof(indx_t); 8768 mc->mc_ki[mc->mc_top] = x; 8769 } 8770 } else { 8771 int psize, nsize, k, keythresh; 8772 8773 /* Maximum free space in an empty page */ 8774 pmax = env->me_psize - PAGEHDRSZ; 8775 /* Threshold number of keys considered "small" */ 8776 keythresh = env->me_psize >> 7; 8777 8778 if (IS_LEAF(mp)) 8779 nsize = mdb_leaf_size(env, newkey, newdata); 8780 else 8781 nsize = mdb_branch_size(env, newkey); 8782 nsize = EVEN(nsize); 8783 8784 /* grab a page to hold a temporary copy */ 8785 copy = mdb_page_malloc(mc->mc_txn, 1); 8786 if (copy == NULL) { 8787 rc = ENOMEM; 8788 goto done; 8789 } 8790 copy->mp_pgno = mp->mp_pgno; 8791 copy->mp_flags = mp->mp_flags; 8792 copy->mp_lower = (PAGEHDRSZ-PAGEBASE); 8793 copy->mp_upper = env->me_psize - PAGEBASE; 8794 8795 /* prepare to insert */ 8796 for (i=0, j=0; i<nkeys; i++) { 8797 if (i == newindx) { 8798 copy->mp_ptrs[j++] = 0; 8799 } 8800 copy->mp_ptrs[j++] = mp->mp_ptrs[i]; 8801 } 8802 8803 /* When items are relatively large the split point needs 8804 * to be checked, because being off-by-one will make the 8805 * difference between success or failure in mdb_node_add. 8806 * 8807 * It's also relevant if a page happens to be laid out 8808 * such that one half of its nodes are all "small" and 8809 * the other half of its nodes are "large." If the new 8810 * item is also "large" and falls on the half with 8811 * "large" nodes, it also may not fit. 8812 * 8813 * As a final tweak, if the new item goes on the last 8814 * spot on the page (and thus, onto the new page), bias 8815 * the split so the new page is emptier than the old page. 8816 * This yields better packing during sequential inserts. 8817 */ 8818 if (nkeys < keythresh || nsize > pmax/16 || newindx >= nkeys) { 8819 /* Find split point */ 8820 psize = 0; 8821 if (newindx <= split_indx || newindx >= nkeys) { 8822 i = 0; j = 1; 8823 k = newindx >= nkeys ? nkeys : split_indx+1+IS_LEAF(mp); 8824 } else { 8825 i = nkeys; j = -1; 8826 k = split_indx-1; 8827 } 8828 for (; i!=k; i+=j) { 8829 if (i == newindx) { 8830 psize += nsize; 8831 node = NULL; 8832 } else { 8833 node = (MDB_node *)((char *)mp + copy->mp_ptrs[i] + PAGEBASE); 8834 psize += NODESIZE + NODEKSZ(node) + sizeof(indx_t); 8835 if (IS_LEAF(mp)) { 8836 if (F_ISSET(node->mn_flags, F_BIGDATA)) 8837 psize += sizeof(pgno_t); 8838 else 8839 psize += NODEDSZ(node); 8840 } 8841 psize = EVEN(psize); 8842 } 8843 if (psize > pmax || i == k-j) { 8844 split_indx = i + (j<0); 8845 break; 8846 } 8847 } 8848 } 8849 if (split_indx == newindx) { 8850 sepkey.mv_size = newkey->mv_size; 8851 sepkey.mv_data = newkey->mv_data; 8852 } else { 8853 node = (MDB_node *)((char *)mp + copy->mp_ptrs[split_indx] + PAGEBASE); 8854 sepkey.mv_size = node->mn_ksize; 8855 sepkey.mv_data = NODEKEY(node); 8856 } 8857 } 8858 } 8859 8860 DPRINTF(("separator is %d [%s]", split_indx, DKEY(&sepkey))); 8861 8862 /* Copy separator key to the parent. 8863 */ 8864 if (SIZELEFT(mn.mc_pg[ptop]) < mdb_branch_size(env, &sepkey)) { 8865 int snum = mc->mc_snum; 8866 mn.mc_snum--; 8867 mn.mc_top--; 8868 did_split = 1; 8869 /* We want other splits to find mn when doing fixups */ 8870 WITH_CURSOR_TRACKING(mn, 8871 rc = mdb_page_split(&mn, &sepkey, NULL, rp->mp_pgno, 0)); 8872 if (rc) 8873 goto done; 8874 8875 /* root split? */ 8876 if (mc->mc_snum > snum) { 8877 ptop++; 8878 } 8879 /* Right page might now have changed parent. 8880 * Check if left page also changed parent. 8881 */ 8882 if (mn.mc_pg[ptop] != mc->mc_pg[ptop] && 8883 mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) { 8884 for (i=0; i<ptop; i++) { 8885 mc->mc_pg[i] = mn.mc_pg[i]; 8886 mc->mc_ki[i] = mn.mc_ki[i]; 8887 } 8888 mc->mc_pg[ptop] = mn.mc_pg[ptop]; 8889 if (mn.mc_ki[ptop]) { 8890 mc->mc_ki[ptop] = mn.mc_ki[ptop] - 1; 8891 } else { 8892 /* find right page's left sibling */ 8893 mc->mc_ki[ptop] = mn.mc_ki[ptop]; 8894 mdb_cursor_sibling(mc, 0); 8895 } 8896 } 8897 } else { 8898 mn.mc_top--; 8899 rc = mdb_node_add(&mn, mn.mc_ki[ptop], &sepkey, NULL, rp->mp_pgno, 0); 8900 mn.mc_top++; 8901 } 8902 if (rc != MDB_SUCCESS) { 8903 goto done; 8904 } 8905 if (nflags & MDB_APPEND) { 8906 mc->mc_pg[mc->mc_top] = rp; 8907 mc->mc_ki[mc->mc_top] = 0; 8908 rc = mdb_node_add(mc, 0, newkey, newdata, newpgno, nflags); 8909 if (rc) 8910 goto done; 8911 for (i=0; i<mc->mc_top; i++) 8912 mc->mc_ki[i] = mn.mc_ki[i]; 8913 } else if (!IS_LEAF2(mp)) { 8914 /* Move nodes */ 8915 mc->mc_pg[mc->mc_top] = rp; 8916 i = split_indx; 8917 j = 0; 8918 do { 8919 if (i == newindx) { 8920 rkey.mv_data = newkey->mv_data; 8921 rkey.mv_size = newkey->mv_size; 8922 if (IS_LEAF(mp)) { 8923 rdata = newdata; 8924 } else 8925 pgno = newpgno; 8926 flags = nflags; 8927 /* Update index for the new key. */ 8928 mc->mc_ki[mc->mc_top] = j; 8929 } else { 8930 node = (MDB_node *)((char *)mp + copy->mp_ptrs[i] + PAGEBASE); 8931 rkey.mv_data = NODEKEY(node); 8932 rkey.mv_size = node->mn_ksize; 8933 if (IS_LEAF(mp)) { 8934 xdata.mv_data = NODEDATA(node); 8935 xdata.mv_size = NODEDSZ(node); 8936 rdata = &xdata; 8937 } else 8938 pgno = NODEPGNO(node); 8939 flags = node->mn_flags; 8940 } 8941 8942 if (!IS_LEAF(mp) && j == 0) { 8943 /* First branch index doesn't need key data. */ 8944 rkey.mv_size = 0; 8945 } 8946 8947 rc = mdb_node_add(mc, j, &rkey, rdata, pgno, flags); 8948 if (rc) 8949 goto done; 8950 if (i == nkeys) { 8951 i = 0; 8952 j = 0; 8953 mc->mc_pg[mc->mc_top] = copy; 8954 } else { 8955 i++; 8956 j++; 8957 } 8958 } while (i != split_indx); 8959 8960 nkeys = NUMKEYS(copy); 8961 for (i=0; i<nkeys; i++) 8962 mp->mp_ptrs[i] = copy->mp_ptrs[i]; 8963 mp->mp_lower = copy->mp_lower; 8964 mp->mp_upper = copy->mp_upper; 8965 memcpy(NODEPTR(mp, nkeys-1), NODEPTR(copy, nkeys-1), 8966 env->me_psize - copy->mp_upper - PAGEBASE); 8967 8968 /* reset back to original page */ 8969 if (newindx < split_indx) { 8970 mc->mc_pg[mc->mc_top] = mp; 8971 } else { 8972 mc->mc_pg[mc->mc_top] = rp; 8973 mc->mc_ki[ptop]++; 8974 /* Make sure mc_ki is still valid. 8975 */ 8976 if (mn.mc_pg[ptop] != mc->mc_pg[ptop] && 8977 mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) { 8978 for (i=0; i<=ptop; i++) { 8979 mc->mc_pg[i] = mn.mc_pg[i]; 8980 mc->mc_ki[i] = mn.mc_ki[i]; 8981 } 8982 } 8983 } 8984 if (nflags & MDB_RESERVE) { 8985 node = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]); 8986 if (!(node->mn_flags & F_BIGDATA)) 8987 newdata->mv_data = NODEDATA(node); 8988 } 8989 } else { 8990 if (newindx >= split_indx) { 8991 mc->mc_pg[mc->mc_top] = rp; 8992 mc->mc_ki[ptop]++; 8993 /* Make sure mc_ki is still valid. 8994 */ 8995 if (mn.mc_pg[ptop] != mc->mc_pg[ptop] && 8996 mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) { 8997 for (i=0; i<=ptop; i++) { 8998 mc->mc_pg[i] = mn.mc_pg[i]; 8999 mc->mc_ki[i] = mn.mc_ki[i]; 9000 } 9001 } 9002 } 9003 } 9004 9005 { 9006 /* Adjust other cursors pointing to mp */ 9007 MDB_cursor *m2, *m3; 9008 MDB_dbi dbi = mc->mc_dbi; 9009 nkeys = NUMKEYS(mp); 9010 9011 for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) { 9012 if (mc->mc_flags & C_SUB) 9013 m3 = &m2->mc_xcursor->mx_cursor; 9014 else 9015 m3 = m2; 9016 if (m3 == mc) 9017 continue; 9018 if (!(m2->mc_flags & m3->mc_flags & C_INITIALIZED)) 9019 continue; 9020 if (new_root) { 9021 int k; 9022 /* sub cursors may be on different DB */ 9023 if (m3->mc_pg[0] != mp) 9024 continue; 9025 /* root split */ 9026 for (k=new_root; k>=0; k--) { 9027 m3->mc_ki[k+1] = m3->mc_ki[k]; 9028 m3->mc_pg[k+1] = m3->mc_pg[k]; 9029 } 9030 if (m3->mc_ki[0] >= nkeys) { 9031 m3->mc_ki[0] = 1; 9032 } else { 9033 m3->mc_ki[0] = 0; 9034 } 9035 m3->mc_pg[0] = mc->mc_pg[0]; 9036 m3->mc_snum++; 9037 m3->mc_top++; 9038 } 9039 if (m3->mc_top >= mc->mc_top && m3->mc_pg[mc->mc_top] == mp) { 9040 if (m3->mc_ki[mc->mc_top] >= newindx && !(nflags & MDB_SPLIT_REPLACE)) 9041 m3->mc_ki[mc->mc_top]++; 9042 if (m3->mc_ki[mc->mc_top] >= nkeys) { 9043 m3->mc_pg[mc->mc_top] = rp; 9044 m3->mc_ki[mc->mc_top] -= nkeys; 9045 for (i=0; i<mc->mc_top; i++) { 9046 m3->mc_ki[i] = mn.mc_ki[i]; 9047 m3->mc_pg[i] = mn.mc_pg[i]; 9048 } 9049 } 9050 } else if (!did_split && m3->mc_top >= ptop && m3->mc_pg[ptop] == mc->mc_pg[ptop] && 9051 m3->mc_ki[ptop] >= mc->mc_ki[ptop]) { 9052 m3->mc_ki[ptop]++; 9053 } 9054 if (IS_LEAF(mp)) 9055 XCURSOR_REFRESH(m3, mc->mc_top, m3->mc_pg[mc->mc_top]); 9056 } 9057 } 9058 DPRINTF(("mp left: %d, rp left: %d", SIZELEFT(mp), SIZELEFT(rp))); 9059 9060 done: 9061 if (copy) /* tmp page */ 9062 mdb_page_free(env, copy); 9063 if (rc) 9064 mc->mc_txn->mt_flags |= MDB_TXN_ERROR; 9065 return rc; 9066 } 9067 9068 int 9069 mdb_put(MDB_txn *txn, MDB_dbi dbi, 9070 MDB_val *key, MDB_val *data, unsigned int flags) 9071 { 9072 MDB_cursor mc; 9073 MDB_xcursor mx; 9074 int rc; 9075 9076 if (!key || !data || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 9077 return EINVAL; 9078 9079 if (flags & ~(MDB_NOOVERWRITE|MDB_NODUPDATA|MDB_RESERVE|MDB_APPEND|MDB_APPENDDUP)) 9080 return EINVAL; 9081 9082 if (txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED)) 9083 return (txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN; 9084 9085 mdb_cursor_init(&mc, txn, dbi, &mx); 9086 mc.mc_next = txn->mt_cursors[dbi]; 9087 txn->mt_cursors[dbi] = &mc; 9088 rc = mdb_cursor_put(&mc, key, data, flags); 9089 txn->mt_cursors[dbi] = mc.mc_next; 9090 return rc; 9091 } 9092 9093 #ifndef MDB_WBUF 9094 #define MDB_WBUF (1024*1024) 9095 #endif 9096 #define MDB_EOF 0x10 /**< #mdb_env_copyfd1() is done reading */ 9097 9098 /** State needed for a double-buffering compacting copy. */ 9099 typedef struct mdb_copy { 9100 MDB_env *mc_env; 9101 MDB_txn *mc_txn; 9102 pthread_mutex_t mc_mutex; 9103 pthread_cond_t mc_cond; /**< Condition variable for #mc_new */ 9104 char *mc_wbuf[2]; 9105 char *mc_over[2]; 9106 int mc_wlen[2]; 9107 int mc_olen[2]; 9108 pgno_t mc_next_pgno; 9109 HANDLE mc_fd; 9110 int mc_toggle; /**< Buffer number in provider */ 9111 int mc_new; /**< (0-2 buffers to write) | (#MDB_EOF at end) */ 9112 /** Error code. Never cleared if set. Both threads can set nonzero 9113 * to fail the copy. Not mutex-protected, LMDB expects atomic int. 9114 */ 9115 volatile int mc_error; 9116 } mdb_copy; 9117 9118 /** Dedicated writer thread for compacting copy. */ 9119 static THREAD_RET ESECT CALL_CONV 9120 mdb_env_copythr(void *arg) 9121 { 9122 mdb_copy *my = arg; 9123 char *ptr; 9124 int toggle = 0, wsize, rc; 9125 #ifdef _WIN32 9126 DWORD len; 9127 #define DO_WRITE(rc, fd, ptr, w2, len) rc = WriteFile(fd, ptr, w2, &len, NULL) 9128 #else 9129 int len; 9130 #define DO_WRITE(rc, fd, ptr, w2, len) len = write(fd, ptr, w2); rc = (len >= 0) 9131 #ifdef SIGPIPE 9132 sigset_t set; 9133 sigemptyset(&set); 9134 sigaddset(&set, SIGPIPE); 9135 if ((rc = pthread_sigmask(SIG_BLOCK, &set, NULL)) != 0) 9136 my->mc_error = rc; 9137 #endif 9138 #endif 9139 9140 pthread_mutex_lock(&my->mc_mutex); 9141 for(;;) { 9142 while (!my->mc_new) 9143 pthread_cond_wait(&my->mc_cond, &my->mc_mutex); 9144 if (my->mc_new == 0 + MDB_EOF) /* 0 buffers, just EOF */ 9145 break; 9146 wsize = my->mc_wlen[toggle]; 9147 ptr = my->mc_wbuf[toggle]; 9148 again: 9149 rc = MDB_SUCCESS; 9150 while (wsize > 0 && !my->mc_error) { 9151 DO_WRITE(rc, my->mc_fd, ptr, wsize, len); 9152 if (!rc) { 9153 rc = ErrCode(); 9154 #if defined(SIGPIPE) && !defined(_WIN32) 9155 if (rc == EPIPE) { 9156 /* Collect the pending SIGPIPE, otherwise at least OS X 9157 * gives it to the process on thread-exit (ITS#8504). 9158 */ 9159 int tmp; 9160 sigwait(&set, &tmp); 9161 } 9162 #endif 9163 break; 9164 } else if (len > 0) { 9165 rc = MDB_SUCCESS; 9166 ptr += len; 9167 wsize -= len; 9168 continue; 9169 } else { 9170 rc = EIO; 9171 break; 9172 } 9173 } 9174 if (rc) { 9175 my->mc_error = rc; 9176 } 9177 /* If there's an overflow page tail, write it too */ 9178 if (my->mc_olen[toggle]) { 9179 wsize = my->mc_olen[toggle]; 9180 ptr = my->mc_over[toggle]; 9181 my->mc_olen[toggle] = 0; 9182 goto again; 9183 } 9184 my->mc_wlen[toggle] = 0; 9185 toggle ^= 1; 9186 /* Return the empty buffer to provider */ 9187 my->mc_new--; 9188 pthread_cond_signal(&my->mc_cond); 9189 } 9190 pthread_mutex_unlock(&my->mc_mutex); 9191 return (THREAD_RET)0; 9192 #undef DO_WRITE 9193 } 9194 9195 /** Give buffer and/or #MDB_EOF to writer thread, await unused buffer. 9196 * 9197 * @param[in] my control structure. 9198 * @param[in] adjust (1 to hand off 1 buffer) | (MDB_EOF when ending). 9199 */ 9200 static int ESECT 9201 mdb_env_cthr_toggle(mdb_copy *my, int adjust) 9202 { 9203 pthread_mutex_lock(&my->mc_mutex); 9204 my->mc_new += adjust; 9205 pthread_cond_signal(&my->mc_cond); 9206 while (my->mc_new & 2) /* both buffers in use */ 9207 pthread_cond_wait(&my->mc_cond, &my->mc_mutex); 9208 pthread_mutex_unlock(&my->mc_mutex); 9209 9210 my->mc_toggle ^= (adjust & 1); 9211 /* Both threads reset mc_wlen, to be safe from threading errors */ 9212 my->mc_wlen[my->mc_toggle] = 0; 9213 return my->mc_error; 9214 } 9215 9216 /** Depth-first tree traversal for compacting copy. 9217 * @param[in] my control structure. 9218 * @param[in,out] pg database root. 9219 * @param[in] flags includes #F_DUPDATA if it is a sorted-duplicate sub-DB. 9220 */ 9221 static int ESECT 9222 mdb_env_cwalk(mdb_copy *my, pgno_t *pg, int flags) 9223 { 9224 MDB_cursor mc = {0}; 9225 MDB_node *ni; 9226 MDB_page *mo, *mp, *leaf; 9227 char *buf, *ptr; 9228 int rc, toggle; 9229 unsigned int i; 9230 9231 /* Empty DB, nothing to do */ 9232 if (*pg == P_INVALID) 9233 return MDB_SUCCESS; 9234 9235 mc.mc_snum = 1; 9236 mc.mc_txn = my->mc_txn; 9237 9238 rc = mdb_page_get(&mc, *pg, &mc.mc_pg[0], NULL); 9239 if (rc) 9240 return rc; 9241 rc = mdb_page_search_root(&mc, NULL, MDB_PS_FIRST); 9242 if (rc) 9243 return rc; 9244 9245 /* Make cursor pages writable */ 9246 buf = ptr = malloc(my->mc_env->me_psize * mc.mc_snum); 9247 if (buf == NULL) 9248 return ENOMEM; 9249 9250 for (i=0; i<mc.mc_top; i++) { 9251 mdb_page_copy((MDB_page *)ptr, mc.mc_pg[i], my->mc_env->me_psize); 9252 mc.mc_pg[i] = (MDB_page *)ptr; 9253 ptr += my->mc_env->me_psize; 9254 } 9255 9256 /* This is writable space for a leaf page. Usually not needed. */ 9257 leaf = (MDB_page *)ptr; 9258 9259 toggle = my->mc_toggle; 9260 while (mc.mc_snum > 0) { 9261 unsigned n; 9262 mp = mc.mc_pg[mc.mc_top]; 9263 n = NUMKEYS(mp); 9264 9265 if (IS_LEAF(mp)) { 9266 if (!IS_LEAF2(mp) && !(flags & F_DUPDATA)) { 9267 for (i=0; i<n; i++) { 9268 ni = NODEPTR(mp, i); 9269 if (ni->mn_flags & F_BIGDATA) { 9270 MDB_page *omp; 9271 pgno_t pg; 9272 9273 /* Need writable leaf */ 9274 if (mp != leaf) { 9275 mc.mc_pg[mc.mc_top] = leaf; 9276 mdb_page_copy(leaf, mp, my->mc_env->me_psize); 9277 mp = leaf; 9278 ni = NODEPTR(mp, i); 9279 } 9280 9281 memcpy(&pg, NODEDATA(ni), sizeof(pg)); 9282 memcpy(NODEDATA(ni), &my->mc_next_pgno, sizeof(pgno_t)); 9283 rc = mdb_page_get(&mc, pg, &omp, NULL); 9284 if (rc) 9285 goto done; 9286 if (my->mc_wlen[toggle] >= MDB_WBUF) { 9287 rc = mdb_env_cthr_toggle(my, 1); 9288 if (rc) 9289 goto done; 9290 toggle = my->mc_toggle; 9291 } 9292 mo = (MDB_page *)(my->mc_wbuf[toggle] + my->mc_wlen[toggle]); 9293 memcpy(mo, omp, my->mc_env->me_psize); 9294 mo->mp_pgno = my->mc_next_pgno; 9295 my->mc_next_pgno += omp->mp_pages; 9296 my->mc_wlen[toggle] += my->mc_env->me_psize; 9297 if (omp->mp_pages > 1) { 9298 my->mc_olen[toggle] = my->mc_env->me_psize * (omp->mp_pages - 1); 9299 my->mc_over[toggle] = (char *)omp + my->mc_env->me_psize; 9300 rc = mdb_env_cthr_toggle(my, 1); 9301 if (rc) 9302 goto done; 9303 toggle = my->mc_toggle; 9304 } 9305 } else if (ni->mn_flags & F_SUBDATA) { 9306 MDB_db db; 9307 9308 /* Need writable leaf */ 9309 if (mp != leaf) { 9310 mc.mc_pg[mc.mc_top] = leaf; 9311 mdb_page_copy(leaf, mp, my->mc_env->me_psize); 9312 mp = leaf; 9313 ni = NODEPTR(mp, i); 9314 } 9315 9316 memcpy(&db, NODEDATA(ni), sizeof(db)); 9317 my->mc_toggle = toggle; 9318 rc = mdb_env_cwalk(my, &db.md_root, ni->mn_flags & F_DUPDATA); 9319 if (rc) 9320 goto done; 9321 toggle = my->mc_toggle; 9322 memcpy(NODEDATA(ni), &db, sizeof(db)); 9323 } 9324 } 9325 } 9326 } else { 9327 mc.mc_ki[mc.mc_top]++; 9328 if (mc.mc_ki[mc.mc_top] < n) { 9329 pgno_t pg; 9330 again: 9331 ni = NODEPTR(mp, mc.mc_ki[mc.mc_top]); 9332 pg = NODEPGNO(ni); 9333 rc = mdb_page_get(&mc, pg, &mp, NULL); 9334 if (rc) 9335 goto done; 9336 mc.mc_top++; 9337 mc.mc_snum++; 9338 mc.mc_ki[mc.mc_top] = 0; 9339 if (IS_BRANCH(mp)) { 9340 /* Whenever we advance to a sibling branch page, 9341 * we must proceed all the way down to its first leaf. 9342 */ 9343 mdb_page_copy(mc.mc_pg[mc.mc_top], mp, my->mc_env->me_psize); 9344 goto again; 9345 } else 9346 mc.mc_pg[mc.mc_top] = mp; 9347 continue; 9348 } 9349 } 9350 if (my->mc_wlen[toggle] >= MDB_WBUF) { 9351 rc = mdb_env_cthr_toggle(my, 1); 9352 if (rc) 9353 goto done; 9354 toggle = my->mc_toggle; 9355 } 9356 mo = (MDB_page *)(my->mc_wbuf[toggle] + my->mc_wlen[toggle]); 9357 mdb_page_copy(mo, mp, my->mc_env->me_psize); 9358 mo->mp_pgno = my->mc_next_pgno++; 9359 my->mc_wlen[toggle] += my->mc_env->me_psize; 9360 if (mc.mc_top) { 9361 /* Update parent if there is one */ 9362 ni = NODEPTR(mc.mc_pg[mc.mc_top-1], mc.mc_ki[mc.mc_top-1]); 9363 SETPGNO(ni, mo->mp_pgno); 9364 mdb_cursor_pop(&mc); 9365 } else { 9366 /* Otherwise we're done */ 9367 *pg = mo->mp_pgno; 9368 break; 9369 } 9370 } 9371 done: 9372 free(buf); 9373 return rc; 9374 } 9375 9376 /** Copy environment with compaction. */ 9377 static int ESECT 9378 mdb_env_copyfd1(MDB_env *env, HANDLE fd) 9379 { 9380 MDB_meta *mm; 9381 MDB_page *mp; 9382 mdb_copy my = {0}; 9383 MDB_txn *txn = NULL; 9384 pthread_t thr; 9385 pgno_t root, new_root; 9386 int rc = MDB_SUCCESS; 9387 9388 #ifdef _WIN32 9389 if (!(my.mc_mutex = CreateMutex(NULL, FALSE, NULL)) || 9390 !(my.mc_cond = CreateEvent(NULL, FALSE, FALSE, NULL))) { 9391 rc = ErrCode(); 9392 goto done; 9393 } 9394 my.mc_wbuf[0] = _aligned_malloc(MDB_WBUF*2, env->me_os_psize); 9395 if (my.mc_wbuf[0] == NULL) { 9396 /* _aligned_malloc() sets errno, but we use Windows error codes */ 9397 rc = ERROR_NOT_ENOUGH_MEMORY; 9398 goto done; 9399 } 9400 #else 9401 if ((rc = pthread_mutex_init(&my.mc_mutex, NULL)) != 0) 9402 return rc; 9403 if ((rc = pthread_cond_init(&my.mc_cond, NULL)) != 0) 9404 goto done2; 9405 #ifdef HAVE_MEMALIGN 9406 my.mc_wbuf[0] = memalign(env->me_os_psize, MDB_WBUF*2); 9407 if (my.mc_wbuf[0] == NULL) { 9408 rc = errno; 9409 goto done; 9410 } 9411 #else 9412 { 9413 void *p; 9414 if ((rc = posix_memalign(&p, env->me_os_psize, MDB_WBUF*2)) != 0) 9415 goto done; 9416 my.mc_wbuf[0] = p; 9417 } 9418 #endif 9419 #endif 9420 memset(my.mc_wbuf[0], 0, MDB_WBUF*2); 9421 my.mc_wbuf[1] = my.mc_wbuf[0] + MDB_WBUF; 9422 my.mc_next_pgno = NUM_METAS; 9423 my.mc_env = env; 9424 my.mc_fd = fd; 9425 rc = THREAD_CREATE(thr, mdb_env_copythr, &my); 9426 if (rc) 9427 goto done; 9428 9429 rc = mdb_txn_begin(env, NULL, MDB_RDONLY, &txn); 9430 if (rc) 9431 goto finish; 9432 9433 mp = (MDB_page *)my.mc_wbuf[0]; 9434 memset(mp, 0, NUM_METAS * env->me_psize); 9435 mp->mp_pgno = 0; 9436 mp->mp_flags = P_META; 9437 mm = (MDB_meta *)METADATA(mp); 9438 mdb_env_init_meta0(env, mm); 9439 mm->mm_address = env->me_metas[0]->mm_address; 9440 9441 mp = (MDB_page *)(my.mc_wbuf[0] + env->me_psize); 9442 mp->mp_pgno = 1; 9443 mp->mp_flags = P_META; 9444 *(MDB_meta *)METADATA(mp) = *mm; 9445 mm = (MDB_meta *)METADATA(mp); 9446 9447 /* Set metapage 1 with current main DB */ 9448 root = new_root = txn->mt_dbs[MAIN_DBI].md_root; 9449 if (root != P_INVALID) { 9450 /* Count free pages + freeDB pages. Subtract from last_pg 9451 * to find the new last_pg, which also becomes the new root. 9452 */ 9453 MDB_ID freecount = 0; 9454 MDB_cursor mc; 9455 MDB_val key, data; 9456 mdb_cursor_init(&mc, txn, FREE_DBI, NULL); 9457 while ((rc = mdb_cursor_get(&mc, &key, &data, MDB_NEXT)) == 0) 9458 freecount += *(MDB_ID *)data.mv_data; 9459 if (rc != MDB_NOTFOUND) 9460 goto finish; 9461 freecount += txn->mt_dbs[FREE_DBI].md_branch_pages + 9462 txn->mt_dbs[FREE_DBI].md_leaf_pages + 9463 txn->mt_dbs[FREE_DBI].md_overflow_pages; 9464 9465 new_root = txn->mt_next_pgno - 1 - freecount; 9466 mm->mm_last_pg = new_root; 9467 mm->mm_dbs[MAIN_DBI] = txn->mt_dbs[MAIN_DBI]; 9468 mm->mm_dbs[MAIN_DBI].md_root = new_root; 9469 } else { 9470 /* When the DB is empty, handle it specially to 9471 * fix any breakage like page leaks from ITS#8174. 9472 */ 9473 mm->mm_dbs[MAIN_DBI].md_flags = txn->mt_dbs[MAIN_DBI].md_flags; 9474 } 9475 if (root != P_INVALID || mm->mm_dbs[MAIN_DBI].md_flags) { 9476 mm->mm_txnid = 1; /* use metapage 1 */ 9477 } 9478 9479 my.mc_wlen[0] = env->me_psize * NUM_METAS; 9480 my.mc_txn = txn; 9481 rc = mdb_env_cwalk(&my, &root, 0); 9482 if (rc == MDB_SUCCESS && root != new_root) { 9483 rc = MDB_INCOMPATIBLE; /* page leak or corrupt DB */ 9484 } 9485 9486 finish: 9487 if (rc) 9488 my.mc_error = rc; 9489 mdb_env_cthr_toggle(&my, 1 | MDB_EOF); 9490 rc = THREAD_FINISH(thr); 9491 mdb_txn_abort(txn); 9492 9493 done: 9494 #ifdef _WIN32 9495 if (my.mc_wbuf[0]) _aligned_free(my.mc_wbuf[0]); 9496 if (my.mc_cond) CloseHandle(my.mc_cond); 9497 if (my.mc_mutex) CloseHandle(my.mc_mutex); 9498 #else 9499 free(my.mc_wbuf[0]); 9500 pthread_cond_destroy(&my.mc_cond); 9501 done2: 9502 pthread_mutex_destroy(&my.mc_mutex); 9503 #endif 9504 return rc ? rc : my.mc_error; 9505 } 9506 9507 /** Copy environment as-is. */ 9508 static int ESECT 9509 mdb_env_copyfd0(MDB_env *env, HANDLE fd) 9510 { 9511 MDB_txn *txn = NULL; 9512 mdb_mutexref_t wmutex = NULL; 9513 int rc; 9514 size_t wsize, w3; 9515 char *ptr; 9516 #ifdef _WIN32 9517 DWORD len, w2; 9518 #define DO_WRITE(rc, fd, ptr, w2, len) rc = WriteFile(fd, ptr, w2, &len, NULL) 9519 #else 9520 ssize_t len; 9521 size_t w2; 9522 #define DO_WRITE(rc, fd, ptr, w2, len) len = write(fd, ptr, w2); rc = (len >= 0) 9523 #endif 9524 9525 /* Do the lock/unlock of the reader mutex before starting the 9526 * write txn. Otherwise other read txns could block writers. 9527 */ 9528 rc = mdb_txn_begin(env, NULL, MDB_RDONLY, &txn); 9529 if (rc) 9530 return rc; 9531 9532 if (env->me_txns) { 9533 /* We must start the actual read txn after blocking writers */ 9534 mdb_txn_end(txn, MDB_END_RESET_TMP); 9535 9536 /* Temporarily block writers until we snapshot the meta pages */ 9537 wmutex = env->me_wmutex; 9538 if (LOCK_MUTEX(rc, env, wmutex)) 9539 goto leave; 9540 9541 rc = mdb_txn_renew0(txn); 9542 if (rc) { 9543 UNLOCK_MUTEX(wmutex); 9544 goto leave; 9545 } 9546 } 9547 9548 wsize = env->me_psize * NUM_METAS; 9549 ptr = env->me_map; 9550 w2 = wsize; 9551 while (w2 > 0) { 9552 DO_WRITE(rc, fd, ptr, w2, len); 9553 if (!rc) { 9554 rc = ErrCode(); 9555 break; 9556 } else if (len > 0) { 9557 rc = MDB_SUCCESS; 9558 ptr += len; 9559 w2 -= len; 9560 continue; 9561 } else { 9562 /* Non-blocking or async handles are not supported */ 9563 rc = EIO; 9564 break; 9565 } 9566 } 9567 if (wmutex) 9568 UNLOCK_MUTEX(wmutex); 9569 9570 if (rc) 9571 goto leave; 9572 9573 w3 = txn->mt_next_pgno * env->me_psize; 9574 { 9575 size_t fsize = 0; 9576 if ((rc = mdb_fsize(env->me_fd, &fsize))) 9577 goto leave; 9578 if (w3 > fsize) 9579 w3 = fsize; 9580 } 9581 wsize = w3 - wsize; 9582 while (wsize > 0) { 9583 if (wsize > MAX_WRITE) 9584 w2 = MAX_WRITE; 9585 else 9586 w2 = wsize; 9587 DO_WRITE(rc, fd, ptr, w2, len); 9588 if (!rc) { 9589 rc = ErrCode(); 9590 break; 9591 } else if (len > 0) { 9592 rc = MDB_SUCCESS; 9593 ptr += len; 9594 wsize -= len; 9595 continue; 9596 } else { 9597 rc = EIO; 9598 break; 9599 } 9600 } 9601 9602 leave: 9603 mdb_txn_abort(txn); 9604 return rc; 9605 } 9606 9607 int ESECT 9608 mdb_env_copyfd2(MDB_env *env, HANDLE fd, unsigned int flags) 9609 { 9610 if (flags & MDB_CP_COMPACT) 9611 return mdb_env_copyfd1(env, fd); 9612 else 9613 return mdb_env_copyfd0(env, fd); 9614 } 9615 9616 int ESECT 9617 mdb_env_copyfd(MDB_env *env, HANDLE fd) 9618 { 9619 return mdb_env_copyfd2(env, fd, 0); 9620 } 9621 9622 int ESECT 9623 mdb_env_copy2(MDB_env *env, const char *path, unsigned int flags) 9624 { 9625 int rc; 9626 MDB_name fname; 9627 HANDLE newfd = INVALID_HANDLE_VALUE; 9628 9629 rc = mdb_fname_init(path, env->me_flags | MDB_NOLOCK, &fname); 9630 if (rc == MDB_SUCCESS) { 9631 rc = mdb_fopen(env, &fname, MDB_O_COPY, 0666, &newfd); 9632 mdb_fname_destroy(fname); 9633 } 9634 if (rc == MDB_SUCCESS) { 9635 rc = mdb_env_copyfd2(env, newfd, flags); 9636 if (close(newfd) < 0 && rc == MDB_SUCCESS) 9637 rc = ErrCode(); 9638 } 9639 return rc; 9640 } 9641 9642 int ESECT 9643 mdb_env_copy(MDB_env *env, const char *path) 9644 { 9645 return mdb_env_copy2(env, path, 0); 9646 } 9647 9648 int ESECT 9649 mdb_env_set_flags(MDB_env *env, unsigned int flag, int onoff) 9650 { 9651 if (flag & ~CHANGEABLE) 9652 return EINVAL; 9653 if (onoff) 9654 env->me_flags |= flag; 9655 else 9656 env->me_flags &= ~flag; 9657 return MDB_SUCCESS; 9658 } 9659 9660 int ESECT 9661 mdb_env_get_flags(MDB_env *env, unsigned int *arg) 9662 { 9663 if (!env || !arg) 9664 return EINVAL; 9665 9666 *arg = env->me_flags & (CHANGEABLE|CHANGELESS); 9667 return MDB_SUCCESS; 9668 } 9669 9670 int ESECT 9671 mdb_env_set_userctx(MDB_env *env, void *ctx) 9672 { 9673 if (!env) 9674 return EINVAL; 9675 env->me_userctx = ctx; 9676 return MDB_SUCCESS; 9677 } 9678 9679 void * ESECT 9680 mdb_env_get_userctx(MDB_env *env) 9681 { 9682 return env ? env->me_userctx : NULL; 9683 } 9684 9685 int ESECT 9686 mdb_env_set_assert(MDB_env *env, MDB_assert_func *func) 9687 { 9688 if (!env) 9689 return EINVAL; 9690 #ifndef NDEBUG 9691 env->me_assert_func = func; 9692 #endif 9693 return MDB_SUCCESS; 9694 } 9695 9696 int ESECT 9697 mdb_env_get_path(MDB_env *env, const char **arg) 9698 { 9699 if (!env || !arg) 9700 return EINVAL; 9701 9702 *arg = env->me_path; 9703 return MDB_SUCCESS; 9704 } 9705 9706 int ESECT 9707 mdb_env_get_fd(MDB_env *env, mdb_filehandle_t *arg) 9708 { 9709 if (!env || !arg) 9710 return EINVAL; 9711 9712 *arg = env->me_fd; 9713 return MDB_SUCCESS; 9714 } 9715 9716 /** Common code for #mdb_stat() and #mdb_env_stat(). 9717 * @param[in] env the environment to operate in. 9718 * @param[in] db the #MDB_db record containing the stats to return. 9719 * @param[out] arg the address of an #MDB_stat structure to receive the stats. 9720 * @return 0, this function always succeeds. 9721 */ 9722 static int ESECT 9723 mdb_stat0(MDB_env *env, MDB_db *db, MDB_stat *arg) 9724 { 9725 arg->ms_psize = env->me_psize; 9726 arg->ms_depth = db->md_depth; 9727 arg->ms_branch_pages = db->md_branch_pages; 9728 arg->ms_leaf_pages = db->md_leaf_pages; 9729 arg->ms_overflow_pages = db->md_overflow_pages; 9730 arg->ms_entries = db->md_entries; 9731 9732 return MDB_SUCCESS; 9733 } 9734 9735 int ESECT 9736 mdb_env_stat(MDB_env *env, MDB_stat *arg) 9737 { 9738 MDB_meta *meta; 9739 9740 if (env == NULL || arg == NULL) 9741 return EINVAL; 9742 9743 meta = mdb_env_pick_meta(env); 9744 9745 return mdb_stat0(env, &meta->mm_dbs[MAIN_DBI], arg); 9746 } 9747 9748 int ESECT 9749 mdb_env_info(MDB_env *env, MDB_envinfo *arg) 9750 { 9751 MDB_meta *meta; 9752 9753 if (env == NULL || arg == NULL) 9754 return EINVAL; 9755 9756 meta = mdb_env_pick_meta(env); 9757 arg->me_mapaddr = meta->mm_address; 9758 arg->me_last_pgno = meta->mm_last_pg; 9759 arg->me_last_txnid = meta->mm_txnid; 9760 9761 arg->me_mapsize = env->me_mapsize; 9762 arg->me_maxreaders = env->me_maxreaders; 9763 arg->me_numreaders = env->me_txns ? env->me_txns->mti_numreaders : 0; 9764 return MDB_SUCCESS; 9765 } 9766 9767 /** Set the default comparison functions for a database. 9768 * Called immediately after a database is opened to set the defaults. 9769 * The user can then override them with #mdb_set_compare() or 9770 * #mdb_set_dupsort(). 9771 * @param[in] txn A transaction handle returned by #mdb_txn_begin() 9772 * @param[in] dbi A database handle returned by #mdb_dbi_open() 9773 */ 9774 static void 9775 mdb_default_cmp(MDB_txn *txn, MDB_dbi dbi) 9776 { 9777 uint16_t f = txn->mt_dbs[dbi].md_flags; 9778 9779 txn->mt_dbxs[dbi].md_cmp = 9780 (f & MDB_REVERSEKEY) ? mdb_cmp_memnr : 9781 (f & MDB_INTEGERKEY) ? mdb_cmp_cint : mdb_cmp_memn; 9782 9783 txn->mt_dbxs[dbi].md_dcmp = 9784 !(f & MDB_DUPSORT) ? 0 : 9785 ((f & MDB_INTEGERDUP) 9786 ? ((f & MDB_DUPFIXED) ? mdb_cmp_int : mdb_cmp_cint) 9787 : ((f & MDB_REVERSEDUP) ? mdb_cmp_memnr : mdb_cmp_memn)); 9788 } 9789 9790 int mdb_dbi_open(MDB_txn *txn, const char *name, unsigned int flags, MDB_dbi *dbi) 9791 { 9792 MDB_val key, data; 9793 MDB_dbi i; 9794 MDB_cursor mc; 9795 MDB_db dummy; 9796 int rc, dbflag, exact; 9797 unsigned int unused = 0, seq; 9798 char *namedup; 9799 size_t len; 9800 9801 if (flags & ~VALID_FLAGS) 9802 return EINVAL; 9803 if (txn->mt_flags & MDB_TXN_BLOCKED) 9804 return MDB_BAD_TXN; 9805 9806 /* main DB? */ 9807 if (!name) { 9808 *dbi = MAIN_DBI; 9809 if (flags & PERSISTENT_FLAGS) { 9810 uint16_t f2 = flags & PERSISTENT_FLAGS; 9811 /* make sure flag changes get committed */ 9812 if ((txn->mt_dbs[MAIN_DBI].md_flags | f2) != txn->mt_dbs[MAIN_DBI].md_flags) { 9813 txn->mt_dbs[MAIN_DBI].md_flags |= f2; 9814 txn->mt_flags |= MDB_TXN_DIRTY; 9815 } 9816 } 9817 mdb_default_cmp(txn, MAIN_DBI); 9818 return MDB_SUCCESS; 9819 } 9820 9821 if (txn->mt_dbxs[MAIN_DBI].md_cmp == NULL) { 9822 mdb_default_cmp(txn, MAIN_DBI); 9823 } 9824 9825 /* Is the DB already open? */ 9826 len = strlen(name); 9827 for (i=CORE_DBS; i<txn->mt_numdbs; i++) { 9828 if (!txn->mt_dbxs[i].md_name.mv_size) { 9829 /* Remember this free slot */ 9830 if (!unused) unused = i; 9831 continue; 9832 } 9833 if (len == txn->mt_dbxs[i].md_name.mv_size && 9834 !strncmp(name, txn->mt_dbxs[i].md_name.mv_data, len)) { 9835 *dbi = i; 9836 return MDB_SUCCESS; 9837 } 9838 } 9839 9840 /* If no free slot and max hit, fail */ 9841 if (!unused && txn->mt_numdbs >= txn->mt_env->me_maxdbs) 9842 return MDB_DBS_FULL; 9843 9844 /* Cannot mix named databases with some mainDB flags */ 9845 if (txn->mt_dbs[MAIN_DBI].md_flags & (MDB_DUPSORT|MDB_INTEGERKEY)) 9846 return (flags & MDB_CREATE) ? MDB_INCOMPATIBLE : MDB_NOTFOUND; 9847 9848 /* Find the DB info */ 9849 dbflag = DB_NEW|DB_VALID|DB_USRVALID; 9850 exact = 0; 9851 key.mv_size = len; 9852 key.mv_data = (void *)name; 9853 mdb_cursor_init(&mc, txn, MAIN_DBI, NULL); 9854 rc = mdb_cursor_set(&mc, &key, &data, MDB_SET, &exact); 9855 if (rc == MDB_SUCCESS) { 9856 /* make sure this is actually a DB */ 9857 MDB_node *node = NODEPTR(mc.mc_pg[mc.mc_top], mc.mc_ki[mc.mc_top]); 9858 if ((node->mn_flags & (F_DUPDATA|F_SUBDATA)) != F_SUBDATA) 9859 return MDB_INCOMPATIBLE; 9860 } else { 9861 if (rc != MDB_NOTFOUND || !(flags & MDB_CREATE)) 9862 return rc; 9863 if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) 9864 return EACCES; 9865 } 9866 9867 /* Done here so we cannot fail after creating a new DB */ 9868 if ((namedup = strdup(name)) == NULL) 9869 return ENOMEM; 9870 9871 if (rc) { 9872 /* MDB_NOTFOUND and MDB_CREATE: Create new DB */ 9873 data.mv_size = sizeof(MDB_db); 9874 data.mv_data = &dummy; 9875 memset(&dummy, 0, sizeof(dummy)); 9876 dummy.md_root = P_INVALID; 9877 dummy.md_flags = flags & PERSISTENT_FLAGS; 9878 WITH_CURSOR_TRACKING(mc, 9879 rc = mdb_cursor_put(&mc, &key, &data, F_SUBDATA)); 9880 dbflag |= DB_DIRTY; 9881 } 9882 9883 if (rc) { 9884 free(namedup); 9885 } else { 9886 /* Got info, register DBI in this txn */ 9887 unsigned int slot = unused ? unused : txn->mt_numdbs; 9888 txn->mt_dbxs[slot].md_name.mv_data = namedup; 9889 txn->mt_dbxs[slot].md_name.mv_size = len; 9890 txn->mt_dbxs[slot].md_rel = NULL; 9891 txn->mt_dbflags[slot] = dbflag; 9892 /* txn-> and env-> are the same in read txns, use 9893 * tmp variable to avoid undefined assignment 9894 */ 9895 seq = ++txn->mt_env->me_dbiseqs[slot]; 9896 txn->mt_dbiseqs[slot] = seq; 9897 9898 memcpy(&txn->mt_dbs[slot], data.mv_data, sizeof(MDB_db)); 9899 *dbi = slot; 9900 mdb_default_cmp(txn, slot); 9901 if (!unused) { 9902 txn->mt_numdbs++; 9903 } 9904 } 9905 9906 return rc; 9907 } 9908 9909 int ESECT 9910 mdb_stat(MDB_txn *txn, MDB_dbi dbi, MDB_stat *arg) 9911 { 9912 if (!arg || !TXN_DBI_EXIST(txn, dbi, DB_VALID)) 9913 return EINVAL; 9914 9915 if (txn->mt_flags & MDB_TXN_BLOCKED) 9916 return MDB_BAD_TXN; 9917 9918 if (txn->mt_dbflags[dbi] & DB_STALE) { 9919 MDB_cursor mc; 9920 MDB_xcursor mx; 9921 /* Stale, must read the DB's root. cursor_init does it for us. */ 9922 mdb_cursor_init(&mc, txn, dbi, &mx); 9923 } 9924 return mdb_stat0(txn->mt_env, &txn->mt_dbs[dbi], arg); 9925 } 9926 9927 void mdb_dbi_close(MDB_env *env, MDB_dbi dbi) 9928 { 9929 char *ptr; 9930 if (dbi < CORE_DBS || dbi >= env->me_maxdbs) 9931 return; 9932 ptr = env->me_dbxs[dbi].md_name.mv_data; 9933 /* If there was no name, this was already closed */ 9934 if (ptr) { 9935 env->me_dbxs[dbi].md_name.mv_data = NULL; 9936 env->me_dbxs[dbi].md_name.mv_size = 0; 9937 env->me_dbflags[dbi] = 0; 9938 env->me_dbiseqs[dbi]++; 9939 free(ptr); 9940 } 9941 } 9942 9943 int mdb_dbi_flags(MDB_txn *txn, MDB_dbi dbi, unsigned int *flags) 9944 { 9945 /* We could return the flags for the FREE_DBI too but what's the point? */ 9946 if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 9947 return EINVAL; 9948 *flags = txn->mt_dbs[dbi].md_flags & PERSISTENT_FLAGS; 9949 return MDB_SUCCESS; 9950 } 9951 9952 /** Add all the DB's pages to the free list. 9953 * @param[in] mc Cursor on the DB to free. 9954 * @param[in] subs non-Zero to check for sub-DBs in this DB. 9955 * @return 0 on success, non-zero on failure. 9956 */ 9957 static int 9958 mdb_drop0(MDB_cursor *mc, int subs) 9959 { 9960 int rc; 9961 9962 rc = mdb_page_search(mc, NULL, MDB_PS_FIRST); 9963 if (rc == MDB_SUCCESS) { 9964 MDB_txn *txn = mc->mc_txn; 9965 MDB_node *ni; 9966 MDB_cursor mx; 9967 unsigned int i; 9968 9969 /* DUPSORT sub-DBs have no ovpages/DBs. Omit scanning leaves. 9970 * This also avoids any P_LEAF2 pages, which have no nodes. 9971 * Also if the DB doesn't have sub-DBs and has no overflow 9972 * pages, omit scanning leaves. 9973 */ 9974 if ((mc->mc_flags & C_SUB) || 9975 (!subs && !mc->mc_db->md_overflow_pages)) 9976 mdb_cursor_pop(mc); 9977 9978 mdb_cursor_copy(mc, &mx); 9979 while (mc->mc_snum > 0) { 9980 MDB_page *mp = mc->mc_pg[mc->mc_top]; 9981 unsigned n = NUMKEYS(mp); 9982 if (IS_LEAF(mp)) { 9983 for (i=0; i<n; i++) { 9984 ni = NODEPTR(mp, i); 9985 if (ni->mn_flags & F_BIGDATA) { 9986 MDB_page *omp; 9987 pgno_t pg; 9988 memcpy(&pg, NODEDATA(ni), sizeof(pg)); 9989 rc = mdb_page_get(mc, pg, &omp, NULL); 9990 if (rc != 0) 9991 goto done; 9992 mdb_cassert(mc, IS_OVERFLOW(omp)); 9993 rc = mdb_midl_append_range(&txn->mt_free_pgs, 9994 pg, omp->mp_pages); 9995 if (rc) 9996 goto done; 9997 mc->mc_db->md_overflow_pages -= omp->mp_pages; 9998 if (!mc->mc_db->md_overflow_pages && !subs) 9999 break; 10000 } else if (subs && (ni->mn_flags & F_SUBDATA)) { 10001 mdb_xcursor_init1(mc, ni); 10002 rc = mdb_drop0(&mc->mc_xcursor->mx_cursor, 0); 10003 if (rc) 10004 goto done; 10005 } 10006 } 10007 if (!subs && !mc->mc_db->md_overflow_pages) 10008 goto pop; 10009 } else { 10010 if ((rc = mdb_midl_need(&txn->mt_free_pgs, n)) != 0) 10011 goto done; 10012 for (i=0; i<n; i++) { 10013 pgno_t pg; 10014 ni = NODEPTR(mp, i); 10015 pg = NODEPGNO(ni); 10016 /* free it */ 10017 mdb_midl_xappend(txn->mt_free_pgs, pg); 10018 } 10019 } 10020 if (!mc->mc_top) 10021 break; 10022 mc->mc_ki[mc->mc_top] = i; 10023 rc = mdb_cursor_sibling(mc, 1); 10024 if (rc) { 10025 if (rc != MDB_NOTFOUND) 10026 goto done; 10027 /* no more siblings, go back to beginning 10028 * of previous level. 10029 */ 10030 pop: 10031 mdb_cursor_pop(mc); 10032 mc->mc_ki[0] = 0; 10033 for (i=1; i<mc->mc_snum; i++) { 10034 mc->mc_ki[i] = 0; 10035 mc->mc_pg[i] = mx.mc_pg[i]; 10036 } 10037 } 10038 } 10039 /* free it */ 10040 rc = mdb_midl_append(&txn->mt_free_pgs, mc->mc_db->md_root); 10041 done: 10042 if (rc) 10043 txn->mt_flags |= MDB_TXN_ERROR; 10044 } else if (rc == MDB_NOTFOUND) { 10045 rc = MDB_SUCCESS; 10046 } 10047 mc->mc_flags &= ~C_INITIALIZED; 10048 return rc; 10049 } 10050 10051 int mdb_drop(MDB_txn *txn, MDB_dbi dbi, int del) 10052 { 10053 MDB_cursor *mc, *m2; 10054 int rc; 10055 10056 if ((unsigned)del > 1 || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 10057 return EINVAL; 10058 10059 if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) 10060 return EACCES; 10061 10062 if (TXN_DBI_CHANGED(txn, dbi)) 10063 return MDB_BAD_DBI; 10064 10065 rc = mdb_cursor_open(txn, dbi, &mc); 10066 if (rc) 10067 return rc; 10068 10069 rc = mdb_drop0(mc, mc->mc_db->md_flags & MDB_DUPSORT); 10070 /* Invalidate the dropped DB's cursors */ 10071 for (m2 = txn->mt_cursors[dbi]; m2; m2 = m2->mc_next) 10072 m2->mc_flags &= ~(C_INITIALIZED|C_EOF); 10073 if (rc) 10074 goto leave; 10075 10076 /* Can't delete the main DB */ 10077 if (del && dbi >= CORE_DBS) { 10078 rc = mdb_del0(txn, MAIN_DBI, &mc->mc_dbx->md_name, NULL, F_SUBDATA); 10079 if (!rc) { 10080 txn->mt_dbflags[dbi] = DB_STALE; 10081 mdb_dbi_close(txn->mt_env, dbi); 10082 } else { 10083 txn->mt_flags |= MDB_TXN_ERROR; 10084 } 10085 } else { 10086 /* reset the DB record, mark it dirty */ 10087 txn->mt_dbflags[dbi] |= DB_DIRTY; 10088 txn->mt_dbs[dbi].md_depth = 0; 10089 txn->mt_dbs[dbi].md_branch_pages = 0; 10090 txn->mt_dbs[dbi].md_leaf_pages = 0; 10091 txn->mt_dbs[dbi].md_overflow_pages = 0; 10092 txn->mt_dbs[dbi].md_entries = 0; 10093 txn->mt_dbs[dbi].md_root = P_INVALID; 10094 10095 txn->mt_flags |= MDB_TXN_DIRTY; 10096 } 10097 leave: 10098 mdb_cursor_close(mc); 10099 return rc; 10100 } 10101 10102 int mdb_set_compare(MDB_txn *txn, MDB_dbi dbi, MDB_cmp_func *cmp) 10103 { 10104 if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 10105 return EINVAL; 10106 10107 txn->mt_dbxs[dbi].md_cmp = cmp; 10108 return MDB_SUCCESS; 10109 } 10110 10111 int mdb_set_dupsort(MDB_txn *txn, MDB_dbi dbi, MDB_cmp_func *cmp) 10112 { 10113 if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 10114 return EINVAL; 10115 10116 txn->mt_dbxs[dbi].md_dcmp = cmp; 10117 return MDB_SUCCESS; 10118 } 10119 10120 int mdb_set_relfunc(MDB_txn *txn, MDB_dbi dbi, MDB_rel_func *rel) 10121 { 10122 if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 10123 return EINVAL; 10124 10125 txn->mt_dbxs[dbi].md_rel = rel; 10126 return MDB_SUCCESS; 10127 } 10128 10129 int mdb_set_relctx(MDB_txn *txn, MDB_dbi dbi, void *ctx) 10130 { 10131 if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)) 10132 return EINVAL; 10133 10134 txn->mt_dbxs[dbi].md_relctx = ctx; 10135 return MDB_SUCCESS; 10136 } 10137 10138 int ESECT 10139 mdb_env_get_maxkeysize(MDB_env *env) 10140 { 10141 return ENV_MAXKEY(env); 10142 } 10143 10144 int ESECT 10145 mdb_reader_list(MDB_env *env, MDB_msg_func *func, void *ctx) 10146 { 10147 unsigned int i, rdrs; 10148 MDB_reader *mr; 10149 char buf[64]; 10150 int rc = 0, first = 1; 10151 10152 if (!env || !func) 10153 return -1; 10154 if (!env->me_txns) { 10155 return func("(no reader locks)\n", ctx); 10156 } 10157 rdrs = env->me_txns->mti_numreaders; 10158 mr = env->me_txns->mti_readers; 10159 for (i=0; i<rdrs; i++) { 10160 if (mr[i].mr_pid) { 10161 txnid_t txnid = mr[i].mr_txnid; 10162 sprintf(buf, txnid == (txnid_t)-1 ? 10163 "%10d %"Z"x -\n" : "%10d %"Z"x %"Z"u\n", 10164 (int)mr[i].mr_pid, (size_t)mr[i].mr_tid, txnid); 10165 if (first) { 10166 first = 0; 10167 rc = func(" pid thread txnid\n", ctx); 10168 if (rc < 0) 10169 break; 10170 } 10171 rc = func(buf, ctx); 10172 if (rc < 0) 10173 break; 10174 } 10175 } 10176 if (first) { 10177 rc = func("(no active readers)\n", ctx); 10178 } 10179 return rc; 10180 } 10181 10182 /** Insert pid into list if not already present. 10183 * return -1 if already present. 10184 */ 10185 static int ESECT 10186 mdb_pid_insert(MDB_PID_T *ids, MDB_PID_T pid) 10187 { 10188 /* binary search of pid in list */ 10189 unsigned base = 0; 10190 unsigned cursor = 1; 10191 int val = 0; 10192 unsigned n = ids[0]; 10193 10194 while( 0 < n ) { 10195 unsigned pivot = n >> 1; 10196 cursor = base + pivot + 1; 10197 val = pid - ids[cursor]; 10198 10199 if( val < 0 ) { 10200 n = pivot; 10201 10202 } else if ( val > 0 ) { 10203 base = cursor; 10204 n -= pivot + 1; 10205 10206 } else { 10207 /* found, so it's a duplicate */ 10208 return -1; 10209 } 10210 } 10211 10212 if( val > 0 ) { 10213 ++cursor; 10214 } 10215 ids[0]++; 10216 for (n = ids[0]; n > cursor; n--) 10217 ids[n] = ids[n-1]; 10218 ids[n] = pid; 10219 return 0; 10220 } 10221 10222 int ESECT 10223 mdb_reader_check(MDB_env *env, int *dead) 10224 { 10225 if (!env) 10226 return EINVAL; 10227 if (dead) 10228 *dead = 0; 10229 return env->me_txns ? mdb_reader_check0(env, 0, dead) : MDB_SUCCESS; 10230 } 10231 10232 /** As #mdb_reader_check(). \b rlocked is set if caller locked #me_rmutex. */ 10233 static int ESECT 10234 mdb_reader_check0(MDB_env *env, int rlocked, int *dead) 10235 { 10236 mdb_mutexref_t rmutex = rlocked ? NULL : env->me_rmutex; 10237 unsigned int i, j, rdrs; 10238 MDB_reader *mr; 10239 MDB_PID_T *pids, pid; 10240 int rc = MDB_SUCCESS, count = 0; 10241 10242 rdrs = env->me_txns->mti_numreaders; 10243 pids = malloc((rdrs+1) * sizeof(MDB_PID_T)); 10244 if (!pids) 10245 return ENOMEM; 10246 pids[0] = 0; 10247 mr = env->me_txns->mti_readers; 10248 for (i=0; i<rdrs; i++) { 10249 pid = mr[i].mr_pid; 10250 if (pid && pid != env->me_pid) { 10251 if (mdb_pid_insert(pids, pid) == 0) { 10252 if (!mdb_reader_pid(env, Pidcheck, pid)) { 10253 /* Stale reader found */ 10254 j = i; 10255 if (rmutex) { 10256 if ((rc = LOCK_MUTEX0(rmutex)) != 0) { 10257 if ((rc = mdb_mutex_failed(env, rmutex, rc))) 10258 break; 10259 rdrs = 0; /* the above checked all readers */ 10260 } else { 10261 /* Recheck, a new process may have reused pid */ 10262 if (mdb_reader_pid(env, Pidcheck, pid)) 10263 j = rdrs; 10264 } 10265 } 10266 for (; j<rdrs; j++) 10267 if (mr[j].mr_pid == pid) { 10268 DPRINTF(("clear stale reader pid %u txn %"Z"d", 10269 (unsigned) pid, mr[j].mr_txnid)); 10270 mr[j].mr_pid = 0; 10271 count++; 10272 } 10273 if (rmutex) 10274 UNLOCK_MUTEX(rmutex); 10275 } 10276 } 10277 } 10278 } 10279 free(pids); 10280 if (dead) 10281 *dead = count; 10282 return rc; 10283 } 10284 10285 #ifdef MDB_ROBUST_SUPPORTED 10286 /** Handle #LOCK_MUTEX0() failure. 10287 * Try to repair the lock file if the mutex owner died. 10288 * @param[in] env the environment handle 10289 * @param[in] mutex LOCK_MUTEX0() mutex 10290 * @param[in] rc LOCK_MUTEX0() error (nonzero) 10291 * @return 0 on success with the mutex locked, or an error code on failure. 10292 */ 10293 static int ESECT 10294 mdb_mutex_failed(MDB_env *env, mdb_mutexref_t mutex, int rc) 10295 { 10296 int rlocked, rc2; 10297 MDB_meta *meta; 10298 10299 if (rc == MDB_OWNERDEAD) { 10300 /* We own the mutex. Clean up after dead previous owner. */ 10301 rc = MDB_SUCCESS; 10302 rlocked = (mutex == env->me_rmutex); 10303 if (!rlocked) { 10304 /* Keep mti_txnid updated, otherwise next writer can 10305 * overwrite data which latest meta page refers to. 10306 */ 10307 meta = mdb_env_pick_meta(env); 10308 env->me_txns->mti_txnid = meta->mm_txnid; 10309 /* env is hosed if the dead thread was ours */ 10310 if (env->me_txn) { 10311 env->me_flags |= MDB_FATAL_ERROR; 10312 env->me_txn = NULL; 10313 rc = MDB_PANIC; 10314 } 10315 } 10316 DPRINTF(("%cmutex owner died, %s", (rlocked ? 'r' : 'w'), 10317 (rc ? "this process' env is hosed" : "recovering"))); 10318 rc2 = mdb_reader_check0(env, rlocked, NULL); 10319 if (rc2 == 0) 10320 rc2 = mdb_mutex_consistent(mutex); 10321 if (rc || (rc = rc2)) { 10322 DPRINTF(("LOCK_MUTEX recovery failed, %s", mdb_strerror(rc))); 10323 UNLOCK_MUTEX(mutex); 10324 } 10325 } else { 10326 #ifdef _WIN32 10327 rc = ErrCode(); 10328 #endif 10329 DPRINTF(("LOCK_MUTEX failed, %s", mdb_strerror(rc))); 10330 } 10331 10332 return rc; 10333 } 10334 #endif /* MDB_ROBUST_SUPPORTED */ 10335 10336 #if defined(_WIN32) 10337 /** Convert \b src to new wchar_t[] string with room for \b xtra extra chars */ 10338 static int ESECT 10339 utf8_to_utf16(const char *src, MDB_name *dst, int xtra) 10340 { 10341 int rc, need = 0; 10342 wchar_t *result = NULL; 10343 for (;;) { /* malloc result, then fill it in */ 10344 need = MultiByteToWideChar(CP_UTF8, 0, src, -1, result, need); 10345 if (!need) { 10346 rc = ErrCode(); 10347 free(result); 10348 return rc; 10349 } 10350 if (!result) { 10351 result = malloc(sizeof(wchar_t) * (need + xtra)); 10352 if (!result) 10353 return ENOMEM; 10354 continue; 10355 } 10356 dst->mn_alloced = 1; 10357 dst->mn_len = need - 1; 10358 dst->mn_val = result; 10359 return MDB_SUCCESS; 10360 } 10361 } 10362 #endif /* defined(_WIN32) */ 10363 /** @} */