sha256.c (11391B)
1 /* MIT (BSD) license - see LICENSE file for details */ 2 /* SHA256 core code translated from the Bitcoin project's C++: 3 * 4 * src/crypto/sha256.cpp commit 417532c8acb93c36c2b6fd052b7c11b6a2906aa2 5 * Copyright (c) 2014 The Bitcoin Core developers 6 * Distributed under the MIT software license, see the accompanying 7 * file COPYING or http://www.opensource.org/licenses/mit-license.php. 8 */ 9 #include "sha256.h" 10 #include "compiler.h" 11 #include "endian.h" 12 #include <stdbool.h> 13 #include <assert.h> 14 #include <string.h> 15 16 static void invalidate_sha256(struct sha256_ctx *ctx) 17 { 18 #ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL 19 ctx->c.md_len = 0; 20 #else 21 ctx->bytes = (size_t)-1; 22 #endif 23 } 24 25 static void check_sha256(struct sha256_ctx *ctx UNUSED) 26 { 27 #ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL 28 assert(ctx->c.md_len != 0); 29 #else 30 assert(ctx->bytes != (size_t)-1); 31 #endif 32 } 33 34 #ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL 35 void sha256_init(struct sha256_ctx *ctx) 36 { 37 SHA256_Init(&ctx->c); 38 } 39 40 void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size) 41 { 42 check_sha256(ctx); 43 SHA256_Update(&ctx->c, p, size); 44 } 45 46 void sha256_done(struct sha256_ctx *ctx, struct sha256 *res) 47 { 48 SHA256_Final(res->u.u8, &ctx->c); 49 invalidate_sha256(ctx); 50 } 51 #else 52 static uint32_t Ch(uint32_t x, uint32_t y, uint32_t z) 53 { 54 return z ^ (x & (y ^ z)); 55 } 56 static uint32_t Maj(uint32_t x, uint32_t y, uint32_t z) 57 { 58 return (x & y) | (z & (x | y)); 59 } 60 static uint32_t Sigma0(uint32_t x) 61 { 62 return (x >> 2 | x << 30) ^ (x >> 13 | x << 19) ^ (x >> 22 | x << 10); 63 } 64 static uint32_t Sigma1(uint32_t x) 65 { 66 return (x >> 6 | x << 26) ^ (x >> 11 | x << 21) ^ (x >> 25 | x << 7); 67 } 68 static uint32_t sigma0(uint32_t x) 69 { 70 return (x >> 7 | x << 25) ^ (x >> 18 | x << 14) ^ (x >> 3); 71 } 72 static uint32_t sigma1(uint32_t x) 73 { 74 return (x >> 17 | x << 15) ^ (x >> 19 | x << 13) ^ (x >> 10); 75 } 76 77 /** One round of SHA-256. */ 78 static void Round(uint32_t a, uint32_t b, uint32_t c, uint32_t *d, uint32_t e, uint32_t f, uint32_t g, uint32_t *h, uint32_t k, uint32_t w) 79 { 80 uint32_t t1 = *h + Sigma1(e) + Ch(e, f, g) + k + w; 81 uint32_t t2 = Sigma0(a) + Maj(a, b, c); 82 *d += t1; 83 *h = t1 + t2; 84 } 85 86 /** Perform one SHA-256 transformation, processing a 64-byte chunk. */ 87 static void Transform(uint32_t *s, const uint32_t *chunk) 88 { 89 uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7]; 90 uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15; 91 92 Round(a, b, c, &d, e, f, g, &h, 0x428a2f98, w0 = be32_to_cpu(chunk[0])); 93 Round(h, a, b, &c, d, e, f, &g, 0x71374491, w1 = be32_to_cpu(chunk[1])); 94 Round(g, h, a, &b, c, d, e, &f, 0xb5c0fbcf, w2 = be32_to_cpu(chunk[2])); 95 Round(f, g, h, &a, b, c, d, &e, 0xe9b5dba5, w3 = be32_to_cpu(chunk[3])); 96 Round(e, f, g, &h, a, b, c, &d, 0x3956c25b, w4 = be32_to_cpu(chunk[4])); 97 Round(d, e, f, &g, h, a, b, &c, 0x59f111f1, w5 = be32_to_cpu(chunk[5])); 98 Round(c, d, e, &f, g, h, a, &b, 0x923f82a4, w6 = be32_to_cpu(chunk[6])); 99 Round(b, c, d, &e, f, g, h, &a, 0xab1c5ed5, w7 = be32_to_cpu(chunk[7])); 100 Round(a, b, c, &d, e, f, g, &h, 0xd807aa98, w8 = be32_to_cpu(chunk[8])); 101 Round(h, a, b, &c, d, e, f, &g, 0x12835b01, w9 = be32_to_cpu(chunk[9])); 102 Round(g, h, a, &b, c, d, e, &f, 0x243185be, w10 = be32_to_cpu(chunk[10])); 103 Round(f, g, h, &a, b, c, d, &e, 0x550c7dc3, w11 = be32_to_cpu(chunk[11])); 104 Round(e, f, g, &h, a, b, c, &d, 0x72be5d74, w12 = be32_to_cpu(chunk[12])); 105 Round(d, e, f, &g, h, a, b, &c, 0x80deb1fe, w13 = be32_to_cpu(chunk[13])); 106 Round(c, d, e, &f, g, h, a, &b, 0x9bdc06a7, w14 = be32_to_cpu(chunk[14])); 107 Round(b, c, d, &e, f, g, h, &a, 0xc19bf174, w15 = be32_to_cpu(chunk[15])); 108 109 Round(a, b, c, &d, e, f, g, &h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1)); 110 Round(h, a, b, &c, d, e, f, &g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2)); 111 Round(g, h, a, &b, c, d, e, &f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3)); 112 Round(f, g, h, &a, b, c, d, &e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4)); 113 Round(e, f, g, &h, a, b, c, &d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5)); 114 Round(d, e, f, &g, h, a, b, &c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6)); 115 Round(c, d, e, &f, g, h, a, &b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7)); 116 Round(b, c, d, &e, f, g, h, &a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8)); 117 Round(a, b, c, &d, e, f, g, &h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9)); 118 Round(h, a, b, &c, d, e, f, &g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10)); 119 Round(g, h, a, &b, c, d, e, &f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11)); 120 Round(f, g, h, &a, b, c, d, &e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12)); 121 Round(e, f, g, &h, a, b, c, &d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13)); 122 Round(d, e, f, &g, h, a, b, &c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14)); 123 Round(c, d, e, &f, g, h, a, &b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15)); 124 Round(b, c, d, &e, f, g, h, &a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0)); 125 126 Round(a, b, c, &d, e, f, g, &h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1)); 127 Round(h, a, b, &c, d, e, f, &g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2)); 128 Round(g, h, a, &b, c, d, e, &f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3)); 129 Round(f, g, h, &a, b, c, d, &e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4)); 130 Round(e, f, g, &h, a, b, c, &d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5)); 131 Round(d, e, f, &g, h, a, b, &c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6)); 132 Round(c, d, e, &f, g, h, a, &b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7)); 133 Round(b, c, d, &e, f, g, h, &a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8)); 134 Round(a, b, c, &d, e, f, g, &h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9)); 135 Round(h, a, b, &c, d, e, f, &g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10)); 136 Round(g, h, a, &b, c, d, e, &f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11)); 137 Round(f, g, h, &a, b, c, d, &e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12)); 138 Round(e, f, g, &h, a, b, c, &d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13)); 139 Round(d, e, f, &g, h, a, b, &c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14)); 140 Round(c, d, e, &f, g, h, a, &b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15)); 141 Round(b, c, d, &e, f, g, h, &a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0)); 142 143 Round(a, b, c, &d, e, f, g, &h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1)); 144 Round(h, a, b, &c, d, e, f, &g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2)); 145 Round(g, h, a, &b, c, d, e, &f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3)); 146 Round(f, g, h, &a, b, c, d, &e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4)); 147 Round(e, f, g, &h, a, b, c, &d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5)); 148 Round(d, e, f, &g, h, a, b, &c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6)); 149 Round(c, d, e, &f, g, h, a, &b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7)); 150 Round(b, c, d, &e, f, g, h, &a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8)); 151 Round(a, b, c, &d, e, f, g, &h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9)); 152 Round(h, a, b, &c, d, e, f, &g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10)); 153 Round(g, h, a, &b, c, d, e, &f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11)); 154 Round(f, g, h, &a, b, c, d, &e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12)); 155 Round(e, f, g, &h, a, b, c, &d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13)); 156 Round(d, e, f, &g, h, a, b, &c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14)); 157 Round(c, d, e, &f, g, h, a, &b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15)); 158 Round(b, c, d, &e, f, g, h, &a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0)); 159 160 s[0] += a; 161 s[1] += b; 162 s[2] += c; 163 s[3] += d; 164 s[4] += e; 165 s[5] += f; 166 s[6] += g; 167 s[7] += h; 168 } 169 170 static bool alignment_ok(const void *p UNUSED, size_t n UNUSED) 171 { 172 #if HAVE_UNALIGNED_ACCESS 173 return true; 174 #else 175 return ((size_t)p % n == 0); 176 #endif 177 } 178 179 static void add(struct sha256_ctx *ctx, const void *p, size_t len) 180 { 181 const unsigned char *data = p; 182 size_t bufsize = ctx->bytes % 64; 183 184 if (bufsize + len >= 64) { 185 /* Fill the buffer, and process it. */ 186 memcpy(ctx->buf.u8 + bufsize, data, 64 - bufsize); 187 ctx->bytes += 64 - bufsize; 188 data += 64 - bufsize; 189 len -= 64 - bufsize; 190 Transform(ctx->s, ctx->buf.u32); 191 bufsize = 0; 192 } 193 194 while (len >= 64) { 195 /* Process full chunks directly from the source. */ 196 if (alignment_ok(data, sizeof(uint32_t))) 197 Transform(ctx->s, (const uint32_t *)data); 198 else { 199 memcpy(ctx->buf.u8, data, sizeof(ctx->buf)); 200 Transform(ctx->s, ctx->buf.u32); 201 } 202 ctx->bytes += 64; 203 data += 64; 204 len -= 64; 205 } 206 207 if (len) { 208 /* Fill the buffer with what remains. */ 209 memcpy(ctx->buf.u8 + bufsize, data, len); 210 ctx->bytes += len; 211 } 212 } 213 214 void sha256_init(struct sha256_ctx *ctx) 215 { 216 struct sha256_ctx init = SHA256_INIT; 217 *ctx = init; 218 } 219 220 void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size) 221 { 222 check_sha256(ctx); 223 add(ctx, p, size); 224 } 225 226 void sha256_done(struct sha256_ctx *ctx, struct sha256 *res) 227 { 228 static const unsigned char pad[64] = {0x80}; 229 uint64_t sizedesc; 230 size_t i; 231 232 sizedesc = cpu_to_be64((uint64_t)ctx->bytes << 3); 233 /* Add '1' bit to terminate, then all 0 bits, up to next block - 8. */ 234 add(ctx, pad, 1 + ((128 - 8 - (ctx->bytes % 64) - 1) % 64)); 235 /* Add number of bits of data (big endian) */ 236 add(ctx, &sizedesc, 8); 237 for (i = 0; i < sizeof(ctx->s) / sizeof(ctx->s[0]); i++) 238 res->u.u32[i] = cpu_to_be32(ctx->s[i]); 239 invalidate_sha256(ctx); 240 } 241 #endif 242 243 void sha256(struct sha256 *sha, const void *p, size_t size) 244 { 245 struct sha256_ctx ctx; 246 247 sha256_init(&ctx); 248 sha256_update(&ctx, p, size); 249 sha256_done(&ctx, sha); 250 } 251 252 void sha256_u8(struct sha256_ctx *ctx, uint8_t v) 253 { 254 sha256_update(ctx, &v, sizeof(v)); 255 } 256 257 void sha256_u16(struct sha256_ctx *ctx, uint16_t v) 258 { 259 sha256_update(ctx, &v, sizeof(v)); 260 } 261 262 void sha256_u32(struct sha256_ctx *ctx, uint32_t v) 263 { 264 sha256_update(ctx, &v, sizeof(v)); 265 } 266 267 void sha256_u64(struct sha256_ctx *ctx, uint64_t v) 268 { 269 sha256_update(ctx, &v, sizeof(v)); 270 } 271 272 /* Add as little-endian */ 273 void sha256_le16(struct sha256_ctx *ctx, uint16_t v) 274 { 275 leint16_t lev = cpu_to_le16(v); 276 sha256_update(ctx, &lev, sizeof(lev)); 277 } 278 279 void sha256_le32(struct sha256_ctx *ctx, uint32_t v) 280 { 281 leint32_t lev = cpu_to_le32(v); 282 sha256_update(ctx, &lev, sizeof(lev)); 283 } 284 285 void sha256_le64(struct sha256_ctx *ctx, uint64_t v) 286 { 287 leint64_t lev = cpu_to_le64(v); 288 sha256_update(ctx, &lev, sizeof(lev)); 289 } 290 291 /* Add as big-endian */ 292 void sha256_be16(struct sha256_ctx *ctx, uint16_t v) 293 { 294 beint16_t bev = cpu_to_be16(v); 295 sha256_update(ctx, &bev, sizeof(bev)); 296 } 297 298 void sha256_be32(struct sha256_ctx *ctx, uint32_t v) 299 { 300 beint32_t bev = cpu_to_be32(v); 301 sha256_update(ctx, &bev, sizeof(bev)); 302 } 303 304 void sha256_be64(struct sha256_ctx *ctx, uint64_t v) 305 { 306 beint64_t bev = cpu_to_be64(v); 307 sha256_update(ctx, &bev, sizeof(bev)); 308 }