damus

nostr ios client
git clone git://jb55.com/damus
Log | Files | Refs | README | LICENSE

sha256.c (11391B)


      1 /* MIT (BSD) license - see LICENSE file for details */
      2 /* SHA256 core code translated from the Bitcoin project's C++:
      3  *
      4  * src/crypto/sha256.cpp commit 417532c8acb93c36c2b6fd052b7c11b6a2906aa2
      5  * Copyright (c) 2014 The Bitcoin Core developers
      6  * Distributed under the MIT software license, see the accompanying
      7  * file COPYING or http://www.opensource.org/licenses/mit-license.php.
      8  */
      9 #include "sha256.h"
     10 #include "compiler.h"
     11 #include "endian.h"
     12 #include <stdbool.h>
     13 #include <assert.h>
     14 #include <string.h>
     15 
     16 static void invalidate_sha256(struct sha256_ctx *ctx)
     17 {
     18 #ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
     19     ctx->c.md_len = 0;
     20 #else
     21     ctx->bytes = (size_t)-1;
     22 #endif
     23 }
     24 
     25 static void check_sha256(struct sha256_ctx *ctx UNUSED)
     26 {
     27 #ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
     28     assert(ctx->c.md_len != 0);
     29 #else
     30     assert(ctx->bytes != (size_t)-1);
     31 #endif
     32 }
     33 
     34 #ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
     35 void sha256_init(struct sha256_ctx *ctx)
     36 {
     37     SHA256_Init(&ctx->c);
     38 }
     39 
     40 void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size)
     41 {
     42     check_sha256(ctx);
     43     SHA256_Update(&ctx->c, p, size);
     44 }
     45 
     46 void sha256_done(struct sha256_ctx *ctx, struct sha256 *res)
     47 {
     48     SHA256_Final(res->u.u8, &ctx->c);
     49     invalidate_sha256(ctx);
     50 }
     51 #else
     52 static uint32_t Ch(uint32_t x, uint32_t y, uint32_t z)
     53 {
     54     return z ^ (x & (y ^ z));
     55 }
     56 static uint32_t Maj(uint32_t x, uint32_t y, uint32_t z)
     57 {
     58     return (x & y) | (z & (x | y));
     59 }
     60 static uint32_t Sigma0(uint32_t x)
     61 {
     62     return (x >> 2 | x << 30) ^ (x >> 13 | x << 19) ^ (x >> 22 | x << 10);
     63 }
     64 static uint32_t Sigma1(uint32_t x)
     65 {
     66     return (x >> 6 | x << 26) ^ (x >> 11 | x << 21) ^ (x >> 25 | x << 7);
     67 }
     68 static uint32_t sigma0(uint32_t x)
     69 {
     70     return (x >> 7 | x << 25) ^ (x >> 18 | x << 14) ^ (x >> 3);
     71 }
     72 static uint32_t sigma1(uint32_t x)
     73 {
     74     return (x >> 17 | x << 15) ^ (x >> 19 | x << 13) ^ (x >> 10);
     75 }
     76 
     77 /** One round of SHA-256. */
     78 static void Round(uint32_t a, uint32_t b, uint32_t c, uint32_t *d, uint32_t e, uint32_t f, uint32_t g, uint32_t *h, uint32_t k, uint32_t w)
     79 {
     80     uint32_t t1 = *h + Sigma1(e) + Ch(e, f, g) + k + w;
     81     uint32_t t2 = Sigma0(a) + Maj(a, b, c);
     82     *d += t1;
     83     *h = t1 + t2;
     84 }
     85 
     86 /** Perform one SHA-256 transformation, processing a 64-byte chunk. */
     87 static void Transform(uint32_t *s, const uint32_t *chunk)
     88 {
     89     uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
     90     uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
     91 
     92     Round(a, b, c, &d, e, f, g, &h, 0x428a2f98, w0 = be32_to_cpu(chunk[0]));
     93     Round(h, a, b, &c, d, e, f, &g, 0x71374491, w1 = be32_to_cpu(chunk[1]));
     94     Round(g, h, a, &b, c, d, e, &f, 0xb5c0fbcf, w2 = be32_to_cpu(chunk[2]));
     95     Round(f, g, h, &a, b, c, d, &e, 0xe9b5dba5, w3 = be32_to_cpu(chunk[3]));
     96     Round(e, f, g, &h, a, b, c, &d, 0x3956c25b, w4 = be32_to_cpu(chunk[4]));
     97     Round(d, e, f, &g, h, a, b, &c, 0x59f111f1, w5 = be32_to_cpu(chunk[5]));
     98     Round(c, d, e, &f, g, h, a, &b, 0x923f82a4, w6 = be32_to_cpu(chunk[6]));
     99     Round(b, c, d, &e, f, g, h, &a, 0xab1c5ed5, w7 = be32_to_cpu(chunk[7]));
    100     Round(a, b, c, &d, e, f, g, &h, 0xd807aa98, w8 = be32_to_cpu(chunk[8]));
    101     Round(h, a, b, &c, d, e, f, &g, 0x12835b01, w9 = be32_to_cpu(chunk[9]));
    102     Round(g, h, a, &b, c, d, e, &f, 0x243185be, w10 = be32_to_cpu(chunk[10]));
    103     Round(f, g, h, &a, b, c, d, &e, 0x550c7dc3, w11 = be32_to_cpu(chunk[11]));
    104     Round(e, f, g, &h, a, b, c, &d, 0x72be5d74, w12 = be32_to_cpu(chunk[12]));
    105     Round(d, e, f, &g, h, a, b, &c, 0x80deb1fe, w13 = be32_to_cpu(chunk[13]));
    106     Round(c, d, e, &f, g, h, a, &b, 0x9bdc06a7, w14 = be32_to_cpu(chunk[14]));
    107     Round(b, c, d, &e, f, g, h, &a, 0xc19bf174, w15 = be32_to_cpu(chunk[15]));
    108 
    109     Round(a, b, c, &d, e, f, g, &h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1));
    110     Round(h, a, b, &c, d, e, f, &g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2));
    111     Round(g, h, a, &b, c, d, e, &f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3));
    112     Round(f, g, h, &a, b, c, d, &e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4));
    113     Round(e, f, g, &h, a, b, c, &d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5));
    114     Round(d, e, f, &g, h, a, b, &c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6));
    115     Round(c, d, e, &f, g, h, a, &b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7));
    116     Round(b, c, d, &e, f, g, h, &a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8));
    117     Round(a, b, c, &d, e, f, g, &h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9));
    118     Round(h, a, b, &c, d, e, f, &g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10));
    119     Round(g, h, a, &b, c, d, e, &f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11));
    120     Round(f, g, h, &a, b, c, d, &e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12));
    121     Round(e, f, g, &h, a, b, c, &d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13));
    122     Round(d, e, f, &g, h, a, b, &c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14));
    123     Round(c, d, e, &f, g, h, a, &b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15));
    124     Round(b, c, d, &e, f, g, h, &a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0));
    125 
    126     Round(a, b, c, &d, e, f, g, &h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1));
    127     Round(h, a, b, &c, d, e, f, &g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2));
    128     Round(g, h, a, &b, c, d, e, &f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3));
    129     Round(f, g, h, &a, b, c, d, &e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4));
    130     Round(e, f, g, &h, a, b, c, &d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5));
    131     Round(d, e, f, &g, h, a, b, &c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6));
    132     Round(c, d, e, &f, g, h, a, &b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7));
    133     Round(b, c, d, &e, f, g, h, &a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8));
    134     Round(a, b, c, &d, e, f, g, &h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9));
    135     Round(h, a, b, &c, d, e, f, &g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10));
    136     Round(g, h, a, &b, c, d, e, &f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11));
    137     Round(f, g, h, &a, b, c, d, &e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12));
    138     Round(e, f, g, &h, a, b, c, &d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13));
    139     Round(d, e, f, &g, h, a, b, &c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14));
    140     Round(c, d, e, &f, g, h, a, &b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15));
    141     Round(b, c, d, &e, f, g, h, &a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0));
    142 
    143     Round(a, b, c, &d, e, f, g, &h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1));
    144     Round(h, a, b, &c, d, e, f, &g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2));
    145     Round(g, h, a, &b, c, d, e, &f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3));
    146     Round(f, g, h, &a, b, c, d, &e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4));
    147     Round(e, f, g, &h, a, b, c, &d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5));
    148     Round(d, e, f, &g, h, a, b, &c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6));
    149     Round(c, d, e, &f, g, h, a, &b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7));
    150     Round(b, c, d, &e, f, g, h, &a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8));
    151     Round(a, b, c, &d, e, f, g, &h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9));
    152     Round(h, a, b, &c, d, e, f, &g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10));
    153     Round(g, h, a, &b, c, d, e, &f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11));
    154     Round(f, g, h, &a, b, c, d, &e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12));
    155     Round(e, f, g, &h, a, b, c, &d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13));
    156     Round(d, e, f, &g, h, a, b, &c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14));
    157     Round(c, d, e, &f, g, h, a, &b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15));
    158     Round(b, c, d, &e, f, g, h, &a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0));
    159 
    160     s[0] += a;
    161     s[1] += b;
    162     s[2] += c;
    163     s[3] += d;
    164     s[4] += e;
    165     s[5] += f;
    166     s[6] += g;
    167     s[7] += h;
    168 }
    169 
    170 static bool alignment_ok(const void *p UNUSED, size_t n UNUSED)
    171 {
    172 #if HAVE_UNALIGNED_ACCESS
    173     return true;
    174 #else
    175     return ((size_t)p % n == 0);
    176 #endif
    177 }
    178 
    179 static void add(struct sha256_ctx *ctx, const void *p, size_t len)
    180 {
    181     const unsigned char *data = p;
    182     size_t bufsize = ctx->bytes % 64;
    183 
    184     if (bufsize + len >= 64) {
    185         /* Fill the buffer, and process it. */
    186         memcpy(ctx->buf.u8 + bufsize, data, 64 - bufsize);
    187         ctx->bytes += 64 - bufsize;
    188         data += 64 - bufsize;
    189         len -= 64 - bufsize;
    190         Transform(ctx->s, ctx->buf.u32);
    191         bufsize = 0;
    192     }
    193 
    194     while (len >= 64) {
    195         /* Process full chunks directly from the source. */
    196         if (alignment_ok(data, sizeof(uint32_t)))
    197             Transform(ctx->s, (const uint32_t *)data);
    198         else {
    199             memcpy(ctx->buf.u8, data, sizeof(ctx->buf));
    200             Transform(ctx->s, ctx->buf.u32);
    201         }
    202         ctx->bytes += 64;
    203         data += 64;
    204         len -= 64;
    205     }
    206         
    207     if (len) {
    208         /* Fill the buffer with what remains. */
    209         memcpy(ctx->buf.u8 + bufsize, data, len);
    210         ctx->bytes += len;
    211     }
    212 }
    213 
    214 void sha256_init(struct sha256_ctx *ctx)
    215 {
    216     struct sha256_ctx init = SHA256_INIT;
    217     *ctx = init;
    218 }
    219 
    220 void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size)
    221 {
    222     check_sha256(ctx);
    223     add(ctx, p, size);
    224 }
    225 
    226 void sha256_done(struct sha256_ctx *ctx, struct sha256 *res)
    227 {
    228     static const unsigned char pad[64] = {0x80};
    229     uint64_t sizedesc;
    230     size_t i;
    231 
    232     sizedesc = cpu_to_be64((uint64_t)ctx->bytes << 3);
    233     /* Add '1' bit to terminate, then all 0 bits, up to next block - 8. */
    234     add(ctx, pad, 1 + ((128 - 8 - (ctx->bytes % 64) - 1) % 64));
    235     /* Add number of bits of data (big endian) */
    236     add(ctx, &sizedesc, 8);
    237     for (i = 0; i < sizeof(ctx->s) / sizeof(ctx->s[0]); i++)
    238         res->u.u32[i] = cpu_to_be32(ctx->s[i]);
    239     invalidate_sha256(ctx);
    240 }
    241 #endif
    242 
    243 void sha256(struct sha256 *sha, const void *p, size_t size)
    244 {
    245     struct sha256_ctx ctx;
    246 
    247     sha256_init(&ctx);
    248     sha256_update(&ctx, p, size);
    249     sha256_done(&ctx, sha);
    250 }
    251     
    252 void sha256_u8(struct sha256_ctx *ctx, uint8_t v)
    253 {
    254     sha256_update(ctx, &v, sizeof(v));
    255 }
    256 
    257 void sha256_u16(struct sha256_ctx *ctx, uint16_t v)
    258 {
    259     sha256_update(ctx, &v, sizeof(v));
    260 }
    261 
    262 void sha256_u32(struct sha256_ctx *ctx, uint32_t v)
    263 {
    264     sha256_update(ctx, &v, sizeof(v));
    265 }
    266 
    267 void sha256_u64(struct sha256_ctx *ctx, uint64_t v)
    268 {
    269     sha256_update(ctx, &v, sizeof(v));
    270 }
    271 
    272 /* Add as little-endian */
    273 void sha256_le16(struct sha256_ctx *ctx, uint16_t v)
    274 {
    275     leint16_t lev = cpu_to_le16(v);
    276     sha256_update(ctx, &lev, sizeof(lev));
    277 }
    278     
    279 void sha256_le32(struct sha256_ctx *ctx, uint32_t v)
    280 {
    281     leint32_t lev = cpu_to_le32(v);
    282     sha256_update(ctx, &lev, sizeof(lev));
    283 }
    284     
    285 void sha256_le64(struct sha256_ctx *ctx, uint64_t v)
    286 {
    287     leint64_t lev = cpu_to_le64(v);
    288     sha256_update(ctx, &lev, sizeof(lev));
    289 }
    290 
    291 /* Add as big-endian */
    292 void sha256_be16(struct sha256_ctx *ctx, uint16_t v)
    293 {
    294     beint16_t bev = cpu_to_be16(v);
    295     sha256_update(ctx, &bev, sizeof(bev));
    296 }
    297     
    298 void sha256_be32(struct sha256_ctx *ctx, uint32_t v)
    299 {
    300     beint32_t bev = cpu_to_be32(v);
    301     sha256_update(ctx, &bev, sizeof(bev));
    302 }
    303     
    304 void sha256_be64(struct sha256_ctx *ctx, uint64_t v)
    305 {
    306     beint64_t bev = cpu_to_be64(v);
    307     sha256_update(ctx, &bev, sizeof(bev));
    308 }