sha256.c (11197B)
1 2 /* MIT (BSD) license - see LICENSE file for details */ 3 /* SHA256 core code translated from the Bitcoin project's C++: 4 * 5 * src/crypto/sha256.cpp commit 417532c8acb93c36c2b6fd052b7c11b6a2906aa2 6 * Copyright (c) 2014 The Bitcoin Core developers 7 * Distributed under the MIT software license, see the accompanying 8 * file COPYING or http://www.opensource.org/licenses/mit-license.php. 9 */ 10 #include "sha256.h" 11 #include "endian.h" 12 #include "compiler.h" 13 #include <stdbool.h> 14 #include <assert.h> 15 #include <string.h> 16 17 static void invalidate_sha256(struct sha256_ctx *ctx) 18 { 19 #ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL 20 ctx->c.md_len = 0; 21 #else 22 ctx->bytes = (size_t)-1; 23 #endif 24 } 25 26 static void check_sha256(struct sha256_ctx *ctx) 27 { 28 #ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL 29 assert(ctx->c.md_len != 0); 30 #else 31 assert(ctx->bytes != (size_t)-1); 32 #endif 33 } 34 35 #ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL 36 void sha256_init(struct sha256_ctx *ctx) 37 { 38 SHA256_Init(&ctx->c); 39 } 40 41 void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size) 42 { 43 check_sha256(ctx); 44 SHA256_Update(&ctx->c, p, size); 45 } 46 47 void sha256_done(struct sha256_ctx *ctx, struct sha256 *res) 48 { 49 SHA256_Final(res->u.u8, &ctx->c); 50 invalidate_sha256(ctx); 51 } 52 #else 53 static uint32_t Ch(uint32_t x, uint32_t y, uint32_t z) 54 { 55 return z ^ (x & (y ^ z)); 56 } 57 static uint32_t Maj(uint32_t x, uint32_t y, uint32_t z) 58 { 59 return (x & y) | (z & (x | y)); 60 } 61 static uint32_t Sigma0(uint32_t x) 62 { 63 return (x >> 2 | x << 30) ^ (x >> 13 | x << 19) ^ (x >> 22 | x << 10); 64 } 65 static uint32_t Sigma1(uint32_t x) 66 { 67 return (x >> 6 | x << 26) ^ (x >> 11 | x << 21) ^ (x >> 25 | x << 7); 68 } 69 static uint32_t sigma0(uint32_t x) 70 { 71 return (x >> 7 | x << 25) ^ (x >> 18 | x << 14) ^ (x >> 3); 72 } 73 static uint32_t sigma1(uint32_t x) 74 { 75 return (x >> 17 | x << 15) ^ (x >> 19 | x << 13) ^ (x >> 10); 76 } 77 78 /** One round of SHA-256. */ 79 static void Round(uint32_t a, uint32_t b, uint32_t c, uint32_t *d, uint32_t e, uint32_t f, uint32_t g, uint32_t *h, uint32_t k, uint32_t w) 80 { 81 uint32_t t1 = *h + Sigma1(e) + Ch(e, f, g) + k + w; 82 uint32_t t2 = Sigma0(a) + Maj(a, b, c); 83 *d += t1; 84 *h = t1 + t2; 85 } 86 87 /** Perform one SHA-256 transformation, processing a 64-byte chunk. */ 88 static void Transform(uint32_t *s, const uint32_t *chunk) 89 { 90 uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7]; 91 uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15; 92 93 Round(a, b, c, &d, e, f, g, &h, 0x428a2f98, w0 = be32_to_cpu(chunk[0])); 94 Round(h, a, b, &c, d, e, f, &g, 0x71374491, w1 = be32_to_cpu(chunk[1])); 95 Round(g, h, a, &b, c, d, e, &f, 0xb5c0fbcf, w2 = be32_to_cpu(chunk[2])); 96 Round(f, g, h, &a, b, c, d, &e, 0xe9b5dba5, w3 = be32_to_cpu(chunk[3])); 97 Round(e, f, g, &h, a, b, c, &d, 0x3956c25b, w4 = be32_to_cpu(chunk[4])); 98 Round(d, e, f, &g, h, a, b, &c, 0x59f111f1, w5 = be32_to_cpu(chunk[5])); 99 Round(c, d, e, &f, g, h, a, &b, 0x923f82a4, w6 = be32_to_cpu(chunk[6])); 100 Round(b, c, d, &e, f, g, h, &a, 0xab1c5ed5, w7 = be32_to_cpu(chunk[7])); 101 Round(a, b, c, &d, e, f, g, &h, 0xd807aa98, w8 = be32_to_cpu(chunk[8])); 102 Round(h, a, b, &c, d, e, f, &g, 0x12835b01, w9 = be32_to_cpu(chunk[9])); 103 Round(g, h, a, &b, c, d, e, &f, 0x243185be, w10 = be32_to_cpu(chunk[10])); 104 Round(f, g, h, &a, b, c, d, &e, 0x550c7dc3, w11 = be32_to_cpu(chunk[11])); 105 Round(e, f, g, &h, a, b, c, &d, 0x72be5d74, w12 = be32_to_cpu(chunk[12])); 106 Round(d, e, f, &g, h, a, b, &c, 0x80deb1fe, w13 = be32_to_cpu(chunk[13])); 107 Round(c, d, e, &f, g, h, a, &b, 0x9bdc06a7, w14 = be32_to_cpu(chunk[14])); 108 Round(b, c, d, &e, f, g, h, &a, 0xc19bf174, w15 = be32_to_cpu(chunk[15])); 109 110 Round(a, b, c, &d, e, f, g, &h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1)); 111 Round(h, a, b, &c, d, e, f, &g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2)); 112 Round(g, h, a, &b, c, d, e, &f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3)); 113 Round(f, g, h, &a, b, c, d, &e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4)); 114 Round(e, f, g, &h, a, b, c, &d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5)); 115 Round(d, e, f, &g, h, a, b, &c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6)); 116 Round(c, d, e, &f, g, h, a, &b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7)); 117 Round(b, c, d, &e, f, g, h, &a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8)); 118 Round(a, b, c, &d, e, f, g, &h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9)); 119 Round(h, a, b, &c, d, e, f, &g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10)); 120 Round(g, h, a, &b, c, d, e, &f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11)); 121 Round(f, g, h, &a, b, c, d, &e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12)); 122 Round(e, f, g, &h, a, b, c, &d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13)); 123 Round(d, e, f, &g, h, a, b, &c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14)); 124 Round(c, d, e, &f, g, h, a, &b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15)); 125 Round(b, c, d, &e, f, g, h, &a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0)); 126 127 Round(a, b, c, &d, e, f, g, &h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1)); 128 Round(h, a, b, &c, d, e, f, &g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2)); 129 Round(g, h, a, &b, c, d, e, &f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3)); 130 Round(f, g, h, &a, b, c, d, &e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4)); 131 Round(e, f, g, &h, a, b, c, &d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5)); 132 Round(d, e, f, &g, h, a, b, &c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6)); 133 Round(c, d, e, &f, g, h, a, &b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7)); 134 Round(b, c, d, &e, f, g, h, &a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8)); 135 Round(a, b, c, &d, e, f, g, &h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9)); 136 Round(h, a, b, &c, d, e, f, &g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10)); 137 Round(g, h, a, &b, c, d, e, &f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11)); 138 Round(f, g, h, &a, b, c, d, &e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12)); 139 Round(e, f, g, &h, a, b, c, &d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13)); 140 Round(d, e, f, &g, h, a, b, &c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14)); 141 Round(c, d, e, &f, g, h, a, &b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15)); 142 Round(b, c, d, &e, f, g, h, &a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0)); 143 144 Round(a, b, c, &d, e, f, g, &h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1)); 145 Round(h, a, b, &c, d, e, f, &g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2)); 146 Round(g, h, a, &b, c, d, e, &f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3)); 147 Round(f, g, h, &a, b, c, d, &e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4)); 148 Round(e, f, g, &h, a, b, c, &d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5)); 149 Round(d, e, f, &g, h, a, b, &c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6)); 150 Round(c, d, e, &f, g, h, a, &b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7)); 151 Round(b, c, d, &e, f, g, h, &a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8)); 152 Round(a, b, c, &d, e, f, g, &h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9)); 153 Round(h, a, b, &c, d, e, f, &g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10)); 154 Round(g, h, a, &b, c, d, e, &f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11)); 155 Round(f, g, h, &a, b, c, d, &e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12)); 156 Round(e, f, g, &h, a, b, c, &d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13)); 157 Round(d, e, f, &g, h, a, b, &c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14)); 158 Round(c, d, e, &f, g, h, a, &b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15)); 159 Round(b, c, d, &e, f, g, h, &a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0)); 160 161 s[0] += a; 162 s[1] += b; 163 s[2] += c; 164 s[3] += d; 165 s[4] += e; 166 s[5] += f; 167 s[6] += g; 168 s[7] += h; 169 } 170 171 172 static void add(struct sha256_ctx *ctx, const void *p, size_t len) 173 { 174 const unsigned char *data = p; 175 size_t bufsize = ctx->bytes % 64; 176 177 if (bufsize + len >= 64) { 178 /* Fill the buffer, and process it. */ 179 memcpy(ctx->buf.u8 + bufsize, data, 64 - bufsize); 180 ctx->bytes += 64 - bufsize; 181 data += 64 - bufsize; 182 len -= 64 - bufsize; 183 Transform(ctx->s, ctx->buf.u32); 184 bufsize = 0; 185 } 186 187 while (len >= 64) { 188 /* Process full chunks directly from the source. */ 189 if (alignment_ok(data, sizeof(uint32_t))) 190 Transform(ctx->s, (const uint32_t *)data); 191 else { 192 memcpy(ctx->buf.u8, data, sizeof(ctx->buf)); 193 Transform(ctx->s, ctx->buf.u32); 194 } 195 ctx->bytes += 64; 196 data += 64; 197 len -= 64; 198 } 199 200 if (len) { 201 /* Fill the buffer with what remains. */ 202 memcpy(ctx->buf.u8 + bufsize, data, len); 203 ctx->bytes += len; 204 } 205 } 206 207 void sha256_init(struct sha256_ctx *ctx) 208 { 209 struct sha256_ctx init = SHA256_INIT; 210 *ctx = init; 211 } 212 213 void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size) 214 { 215 check_sha256(ctx); 216 add(ctx, p, size); 217 } 218 219 void sha256_done(struct sha256_ctx *ctx, struct sha256 *res) 220 { 221 static const unsigned char pad[64] = {0x80}; 222 uint64_t sizedesc; 223 size_t i; 224 225 sizedesc = cpu_to_be64((uint64_t)ctx->bytes << 3); 226 /* Add '1' bit to terminate, then all 0 bits, up to next block - 8. */ 227 add(ctx, pad, 1 + ((128 - 8 - (ctx->bytes % 64) - 1) % 64)); 228 /* Add number of bits of data (big endian) */ 229 add(ctx, &sizedesc, 8); 230 for (i = 0; i < sizeof(ctx->s) / sizeof(ctx->s[0]); i++) 231 res->u.u32[i] = cpu_to_be32(ctx->s[i]); 232 invalidate_sha256(ctx); 233 } 234 #endif 235 236 void sha256(struct sha256 *sha, const void *p, size_t size) 237 { 238 struct sha256_ctx ctx; 239 240 sha256_init(&ctx); 241 sha256_update(&ctx, p, size); 242 sha256_done(&ctx, sha); 243 } 244 245 void sha256_u8(struct sha256_ctx *ctx, uint8_t v) 246 { 247 sha256_update(ctx, &v, sizeof(v)); 248 } 249 250 void sha256_u16(struct sha256_ctx *ctx, uint16_t v) 251 { 252 sha256_update(ctx, &v, sizeof(v)); 253 } 254 255 void sha256_u32(struct sha256_ctx *ctx, uint32_t v) 256 { 257 sha256_update(ctx, &v, sizeof(v)); 258 } 259 260 void sha256_u64(struct sha256_ctx *ctx, uint64_t v) 261 { 262 sha256_update(ctx, &v, sizeof(v)); 263 } 264 265 /* Add as little-endian */ 266 void sha256_le16(struct sha256_ctx *ctx, uint16_t v) 267 { 268 leint16_t lev = cpu_to_le16(v); 269 sha256_update(ctx, &lev, sizeof(lev)); 270 } 271 272 void sha256_le32(struct sha256_ctx *ctx, uint32_t v) 273 { 274 leint32_t lev = cpu_to_le32(v); 275 sha256_update(ctx, &lev, sizeof(lev)); 276 } 277 278 void sha256_le64(struct sha256_ctx *ctx, uint64_t v) 279 { 280 leint64_t lev = cpu_to_le64(v); 281 sha256_update(ctx, &lev, sizeof(lev)); 282 } 283 284 /* Add as big-endian */ 285 void sha256_be16(struct sha256_ctx *ctx, uint16_t v) 286 { 287 beint16_t bev = cpu_to_be16(v); 288 sha256_update(ctx, &bev, sizeof(bev)); 289 } 290 291 void sha256_be32(struct sha256_ctx *ctx, uint32_t v) 292 { 293 beint32_t bev = cpu_to_be32(v); 294 sha256_update(ctx, &bev, sizeof(bev)); 295 } 296 297 void sha256_be64(struct sha256_ctx *ctx, uint64_t v) 298 { 299 beint64_t bev = cpu_to_be64(v); 300 sha256_update(ctx, &bev, sizeof(bev)); 301 } 302 303 304 int sha256d(const unsigned char *bytes, size_t bytes_len, 305 unsigned char *bytes_out, size_t len) 306 { 307 struct sha256 sha_1, sha_2; 308 bool aligned = alignment_ok(bytes_out, sizeof(sha_1.u.u32)); 309 310 if (!bytes || !bytes_out || len != SHA256_LEN) 311 return 0; 312 313 sha256(&sha_1, bytes, bytes_len); 314 sha256(aligned ? (struct sha256 *)bytes_out : &sha_2, &sha_1, sizeof(sha_1)); 315 if (!aligned) { 316 memcpy(bytes_out, &sha_2, sizeof(sha_2)); 317 wally_clear(&sha_2, sizeof(sha_2)); 318 } 319 wally_clear(&sha_1, sizeof(sha_1)); 320 return 1; 321 }