chibipub

experimental activitypub node in C
git clone git://jb55.com/chibipub
Log | Files | Refs | README | LICENSE

blake3_avx2.c (12411B)


      1 #include "blake3_impl.h"
      2 
      3 #include <immintrin.h>
      4 
      5 #define DEGREE 8
      6 
      7 INLINE __m256i loadu(const uint8_t src[32]) {
      8   return _mm256_loadu_si256((const __m256i *)src);
      9 }
     10 
     11 INLINE void storeu(__m256i src, uint8_t dest[16]) {
     12   _mm256_storeu_si256((__m256i *)dest, src);
     13 }
     14 
     15 INLINE __m256i addv(__m256i a, __m256i b) { return _mm256_add_epi32(a, b); }
     16 
     17 // Note that clang-format doesn't like the name "xor" for some reason.
     18 INLINE __m256i xorv(__m256i a, __m256i b) { return _mm256_xor_si256(a, b); }
     19 
     20 INLINE __m256i set1(uint32_t x) { return _mm256_set1_epi32((int32_t)x); }
     21 
     22 INLINE __m256i rot16(__m256i x) {
     23   return _mm256_shuffle_epi8(
     24       x, _mm256_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2,
     25                          13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2));
     26 }
     27 
     28 INLINE __m256i rot12(__m256i x) {
     29   return _mm256_or_si256(_mm256_srli_epi32(x, 12), _mm256_slli_epi32(x, 32 - 12));
     30 }
     31 
     32 INLINE __m256i rot8(__m256i x) {
     33   return _mm256_shuffle_epi8(
     34       x, _mm256_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1,
     35                          12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1));
     36 }
     37 
     38 INLINE __m256i rot7(__m256i x) {
     39   return _mm256_or_si256(_mm256_srli_epi32(x, 7), _mm256_slli_epi32(x, 32 - 7));
     40 }
     41 
     42 INLINE void round_fn(__m256i v[16], __m256i m[16], size_t r) {
     43   v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
     44   v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
     45   v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
     46   v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
     47   v[0] = addv(v[0], v[4]);
     48   v[1] = addv(v[1], v[5]);
     49   v[2] = addv(v[2], v[6]);
     50   v[3] = addv(v[3], v[7]);
     51   v[12] = xorv(v[12], v[0]);
     52   v[13] = xorv(v[13], v[1]);
     53   v[14] = xorv(v[14], v[2]);
     54   v[15] = xorv(v[15], v[3]);
     55   v[12] = rot16(v[12]);
     56   v[13] = rot16(v[13]);
     57   v[14] = rot16(v[14]);
     58   v[15] = rot16(v[15]);
     59   v[8] = addv(v[8], v[12]);
     60   v[9] = addv(v[9], v[13]);
     61   v[10] = addv(v[10], v[14]);
     62   v[11] = addv(v[11], v[15]);
     63   v[4] = xorv(v[4], v[8]);
     64   v[5] = xorv(v[5], v[9]);
     65   v[6] = xorv(v[6], v[10]);
     66   v[7] = xorv(v[7], v[11]);
     67   v[4] = rot12(v[4]);
     68   v[5] = rot12(v[5]);
     69   v[6] = rot12(v[6]);
     70   v[7] = rot12(v[7]);
     71   v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
     72   v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
     73   v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
     74   v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
     75   v[0] = addv(v[0], v[4]);
     76   v[1] = addv(v[1], v[5]);
     77   v[2] = addv(v[2], v[6]);
     78   v[3] = addv(v[3], v[7]);
     79   v[12] = xorv(v[12], v[0]);
     80   v[13] = xorv(v[13], v[1]);
     81   v[14] = xorv(v[14], v[2]);
     82   v[15] = xorv(v[15], v[3]);
     83   v[12] = rot8(v[12]);
     84   v[13] = rot8(v[13]);
     85   v[14] = rot8(v[14]);
     86   v[15] = rot8(v[15]);
     87   v[8] = addv(v[8], v[12]);
     88   v[9] = addv(v[9], v[13]);
     89   v[10] = addv(v[10], v[14]);
     90   v[11] = addv(v[11], v[15]);
     91   v[4] = xorv(v[4], v[8]);
     92   v[5] = xorv(v[5], v[9]);
     93   v[6] = xorv(v[6], v[10]);
     94   v[7] = xorv(v[7], v[11]);
     95   v[4] = rot7(v[4]);
     96   v[5] = rot7(v[5]);
     97   v[6] = rot7(v[6]);
     98   v[7] = rot7(v[7]);
     99 
    100   v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
    101   v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
    102   v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
    103   v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
    104   v[0] = addv(v[0], v[5]);
    105   v[1] = addv(v[1], v[6]);
    106   v[2] = addv(v[2], v[7]);
    107   v[3] = addv(v[3], v[4]);
    108   v[15] = xorv(v[15], v[0]);
    109   v[12] = xorv(v[12], v[1]);
    110   v[13] = xorv(v[13], v[2]);
    111   v[14] = xorv(v[14], v[3]);
    112   v[15] = rot16(v[15]);
    113   v[12] = rot16(v[12]);
    114   v[13] = rot16(v[13]);
    115   v[14] = rot16(v[14]);
    116   v[10] = addv(v[10], v[15]);
    117   v[11] = addv(v[11], v[12]);
    118   v[8] = addv(v[8], v[13]);
    119   v[9] = addv(v[9], v[14]);
    120   v[5] = xorv(v[5], v[10]);
    121   v[6] = xorv(v[6], v[11]);
    122   v[7] = xorv(v[7], v[8]);
    123   v[4] = xorv(v[4], v[9]);
    124   v[5] = rot12(v[5]);
    125   v[6] = rot12(v[6]);
    126   v[7] = rot12(v[7]);
    127   v[4] = rot12(v[4]);
    128   v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
    129   v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
    130   v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
    131   v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
    132   v[0] = addv(v[0], v[5]);
    133   v[1] = addv(v[1], v[6]);
    134   v[2] = addv(v[2], v[7]);
    135   v[3] = addv(v[3], v[4]);
    136   v[15] = xorv(v[15], v[0]);
    137   v[12] = xorv(v[12], v[1]);
    138   v[13] = xorv(v[13], v[2]);
    139   v[14] = xorv(v[14], v[3]);
    140   v[15] = rot8(v[15]);
    141   v[12] = rot8(v[12]);
    142   v[13] = rot8(v[13]);
    143   v[14] = rot8(v[14]);
    144   v[10] = addv(v[10], v[15]);
    145   v[11] = addv(v[11], v[12]);
    146   v[8] = addv(v[8], v[13]);
    147   v[9] = addv(v[9], v[14]);
    148   v[5] = xorv(v[5], v[10]);
    149   v[6] = xorv(v[6], v[11]);
    150   v[7] = xorv(v[7], v[8]);
    151   v[4] = xorv(v[4], v[9]);
    152   v[5] = rot7(v[5]);
    153   v[6] = rot7(v[6]);
    154   v[7] = rot7(v[7]);
    155   v[4] = rot7(v[4]);
    156 }
    157 
    158 INLINE void transpose_vecs(__m256i vecs[DEGREE]) {
    159   // Interleave 32-bit lanes. The low unpack is lanes 00/11/44/55, and the high
    160   // is 22/33/66/77.
    161   __m256i ab_0145 = _mm256_unpacklo_epi32(vecs[0], vecs[1]);
    162   __m256i ab_2367 = _mm256_unpackhi_epi32(vecs[0], vecs[1]);
    163   __m256i cd_0145 = _mm256_unpacklo_epi32(vecs[2], vecs[3]);
    164   __m256i cd_2367 = _mm256_unpackhi_epi32(vecs[2], vecs[3]);
    165   __m256i ef_0145 = _mm256_unpacklo_epi32(vecs[4], vecs[5]);
    166   __m256i ef_2367 = _mm256_unpackhi_epi32(vecs[4], vecs[5]);
    167   __m256i gh_0145 = _mm256_unpacklo_epi32(vecs[6], vecs[7]);
    168   __m256i gh_2367 = _mm256_unpackhi_epi32(vecs[6], vecs[7]);
    169 
    170   // Interleave 64-bit lates. The low unpack is lanes 00/22 and the high is
    171   // 11/33.
    172   __m256i abcd_04 = _mm256_unpacklo_epi64(ab_0145, cd_0145);
    173   __m256i abcd_15 = _mm256_unpackhi_epi64(ab_0145, cd_0145);
    174   __m256i abcd_26 = _mm256_unpacklo_epi64(ab_2367, cd_2367);
    175   __m256i abcd_37 = _mm256_unpackhi_epi64(ab_2367, cd_2367);
    176   __m256i efgh_04 = _mm256_unpacklo_epi64(ef_0145, gh_0145);
    177   __m256i efgh_15 = _mm256_unpackhi_epi64(ef_0145, gh_0145);
    178   __m256i efgh_26 = _mm256_unpacklo_epi64(ef_2367, gh_2367);
    179   __m256i efgh_37 = _mm256_unpackhi_epi64(ef_2367, gh_2367);
    180 
    181   // Interleave 128-bit lanes.
    182   vecs[0] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x20);
    183   vecs[1] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x20);
    184   vecs[2] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x20);
    185   vecs[3] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x20);
    186   vecs[4] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x31);
    187   vecs[5] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x31);
    188   vecs[6] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x31);
    189   vecs[7] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x31);
    190 }
    191 
    192 INLINE void transpose_msg_vecs(const uint8_t *const *inputs,
    193                                size_t block_offset, __m256i out[16]) {
    194   out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m256i)]);
    195   out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m256i)]);
    196   out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m256i)]);
    197   out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m256i)]);
    198   out[4] = loadu(&inputs[4][block_offset + 0 * sizeof(__m256i)]);
    199   out[5] = loadu(&inputs[5][block_offset + 0 * sizeof(__m256i)]);
    200   out[6] = loadu(&inputs[6][block_offset + 0 * sizeof(__m256i)]);
    201   out[7] = loadu(&inputs[7][block_offset + 0 * sizeof(__m256i)]);
    202   out[8] = loadu(&inputs[0][block_offset + 1 * sizeof(__m256i)]);
    203   out[9] = loadu(&inputs[1][block_offset + 1 * sizeof(__m256i)]);
    204   out[10] = loadu(&inputs[2][block_offset + 1 * sizeof(__m256i)]);
    205   out[11] = loadu(&inputs[3][block_offset + 1 * sizeof(__m256i)]);
    206   out[12] = loadu(&inputs[4][block_offset + 1 * sizeof(__m256i)]);
    207   out[13] = loadu(&inputs[5][block_offset + 1 * sizeof(__m256i)]);
    208   out[14] = loadu(&inputs[6][block_offset + 1 * sizeof(__m256i)]);
    209   out[15] = loadu(&inputs[7][block_offset + 1 * sizeof(__m256i)]);
    210   for (size_t i = 0; i < 8; ++i) {
    211     _mm_prefetch(&inputs[i][block_offset + 256], _MM_HINT_T0);
    212   }
    213   transpose_vecs(&out[0]);
    214   transpose_vecs(&out[8]);
    215 }
    216 
    217 INLINE void load_counters(uint64_t counter, bool increment_counter,
    218                           __m256i *out_lo, __m256i *out_hi) {
    219   const __m256i mask = _mm256_set1_epi32(-(int32_t)increment_counter);
    220   const __m256i add0 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
    221   const __m256i add1 = _mm256_and_si256(mask, add0);
    222   __m256i l = _mm256_add_epi32(_mm256_set1_epi32(counter), add1);
    223   __m256i carry = _mm256_cmpgt_epi32(_mm256_xor_si256(add1, _mm256_set1_epi32(0x80000000)), 
    224                                      _mm256_xor_si256(   l, _mm256_set1_epi32(0x80000000)));
    225   __m256i h = _mm256_sub_epi32(_mm256_set1_epi32(counter >> 32), carry);
    226   *out_lo = l;
    227   *out_hi = h;
    228 }
    229 
    230 void blake3_hash8_avx2(const uint8_t *const *inputs, size_t blocks,
    231                        const uint32_t key[8], uint64_t counter,
    232                        bool increment_counter, uint8_t flags,
    233                        uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
    234   __m256i h_vecs[8] = {
    235       set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]),
    236       set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]),
    237   };
    238   __m256i counter_low_vec, counter_high_vec;
    239   load_counters(counter, increment_counter, &counter_low_vec,
    240                 &counter_high_vec);
    241   uint8_t block_flags = flags | flags_start;
    242 
    243   for (size_t block = 0; block < blocks; block++) {
    244     if (block + 1 == blocks) {
    245       block_flags |= flags_end;
    246     }
    247     __m256i block_len_vec = set1(BLAKE3_BLOCK_LEN);
    248     __m256i block_flags_vec = set1(block_flags);
    249     __m256i msg_vecs[16];
    250     transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
    251 
    252     __m256i v[16] = {
    253         h_vecs[0],       h_vecs[1],        h_vecs[2],     h_vecs[3],
    254         h_vecs[4],       h_vecs[5],        h_vecs[6],     h_vecs[7],
    255         set1(IV[0]),     set1(IV[1]),      set1(IV[2]),   set1(IV[3]),
    256         counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
    257     };
    258     round_fn(v, msg_vecs, 0);
    259     round_fn(v, msg_vecs, 1);
    260     round_fn(v, msg_vecs, 2);
    261     round_fn(v, msg_vecs, 3);
    262     round_fn(v, msg_vecs, 4);
    263     round_fn(v, msg_vecs, 5);
    264     round_fn(v, msg_vecs, 6);
    265     h_vecs[0] = xorv(v[0], v[8]);
    266     h_vecs[1] = xorv(v[1], v[9]);
    267     h_vecs[2] = xorv(v[2], v[10]);
    268     h_vecs[3] = xorv(v[3], v[11]);
    269     h_vecs[4] = xorv(v[4], v[12]);
    270     h_vecs[5] = xorv(v[5], v[13]);
    271     h_vecs[6] = xorv(v[6], v[14]);
    272     h_vecs[7] = xorv(v[7], v[15]);
    273 
    274     block_flags = flags;
    275   }
    276 
    277   transpose_vecs(h_vecs);
    278   storeu(h_vecs[0], &out[0 * sizeof(__m256i)]);
    279   storeu(h_vecs[1], &out[1 * sizeof(__m256i)]);
    280   storeu(h_vecs[2], &out[2 * sizeof(__m256i)]);
    281   storeu(h_vecs[3], &out[3 * sizeof(__m256i)]);
    282   storeu(h_vecs[4], &out[4 * sizeof(__m256i)]);
    283   storeu(h_vecs[5], &out[5 * sizeof(__m256i)]);
    284   storeu(h_vecs[6], &out[6 * sizeof(__m256i)]);
    285   storeu(h_vecs[7], &out[7 * sizeof(__m256i)]);
    286 }
    287 
    288 #if !defined(BLAKE3_NO_SSE41)
    289 void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs,
    290                             size_t blocks, const uint32_t key[8],
    291                             uint64_t counter, bool increment_counter,
    292                             uint8_t flags, uint8_t flags_start,
    293                             uint8_t flags_end, uint8_t *out);
    294 #else
    295 void blake3_hash_many_portable(const uint8_t *const *inputs, size_t num_inputs,
    296                                size_t blocks, const uint32_t key[8],
    297                                uint64_t counter, bool increment_counter,
    298                                uint8_t flags, uint8_t flags_start,
    299                                uint8_t flags_end, uint8_t *out);
    300 #endif
    301 
    302 void blake3_hash_many_avx2(const uint8_t *const *inputs, size_t num_inputs,
    303                            size_t blocks, const uint32_t key[8],
    304                            uint64_t counter, bool increment_counter,
    305                            uint8_t flags, uint8_t flags_start,
    306                            uint8_t flags_end, uint8_t *out) {
    307   while (num_inputs >= DEGREE) {
    308     blake3_hash8_avx2(inputs, blocks, key, counter, increment_counter, flags,
    309                       flags_start, flags_end, out);
    310     if (increment_counter) {
    311       counter += DEGREE;
    312     }
    313     inputs += DEGREE;
    314     num_inputs -= DEGREE;
    315     out = &out[DEGREE * BLAKE3_OUT_LEN];
    316   }
    317 #if !defined(BLAKE3_NO_SSE41)
    318   blake3_hash_many_sse41(inputs, num_inputs, blocks, key, counter,
    319                          increment_counter, flags, flags_start, flags_end, out);
    320 #else
    321   blake3_hash_many_portable(inputs, num_inputs, blocks, key, counter,
    322                             increment_counter, flags, flags_start, flags_end,
    323                             out);
    324 #endif
    325 }